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Abstract—As Large Language Models (LLMs) become in-
creasingly integrated into many technological ecosystems across
various domains and industries, identifying which model is
deployed or being interacted with is critical for the security
and trustworthiness of the systems. Current verification methods
typically rely on analyzing the generated output to determine
the source model. However, these techniques are susceptible to
adversarial attacks, operate in a post-hoc manner, and may
require access to the model weights to inject a verifiable finger-
print. In this paper, we propose a novel passive and non-invasive
fingerprinting technique that operates in real-time and remains
effective even under encrypted network traffic conditions. Our
method leverages the intrinsic autoregressive generation nature
of language models, which generate text one token at a time
based on all previously generated tokens, creating a unique
temporal pattern–like a rhythm or heartbeat–that propagates
even when the output is streamed over a network. We find that
measuring the Inter-Token Times (ITTs)–time intervals between
consecutive tokens–can identify different language models with
high accuracy. We develop a Deep Learning (DL) pipeline to
capture these timing patterns using network traffic analysis
and evaluate it on 16 Small Language Models (SLMs) and
10 proprietary LLMs across different deployment scenarios,
including local host machine (GPU/CPU), Local Area Network
(LAN), Remote Network, and VPN. The experimental results
confirm that our proposed technique is effective and maintains
high accuracy even when tested in different network conditions.
This work opens a new avenue for model identification in real-
world scenarios and contributes to more secure and trustworthy
language model deployment.

Index Terms—Large Language Models, Small Language Mod-
els, Fingerprinting, Network Traffic Analysis, Deep Learning

I. INTRODUCTION

In recent years, language models, particularly Large Lan-
guage Models (LLMs), have experienced accelerated advance-
ment and widespread adoption across various fields. Their
remarkable capabilities in language comprehension, reasoning,
text, and code generation have unlocked new possibilities for
automating and solving complex cognitive tasks [1], [2]. Due
to their computational complexity and resource requirements,
these models are typically deployed on expensive specialized
hardware in cloud data centers and accessed as a cloud service
through web applications or APIs provided by the vendors [3].
Building upon these services, third-party platforms integrate

multiple state-of-the-art LLMs and offer them as a single
subscription service to clients.

However, this remote deployment paradigm introduces criti-
cal security and privacy challenges, especially from the client’s
perspective. A fundamental security concern in this ecosystem
is the lack of mechanisms for clients to verify the identity
and integrity of the language models they interact with. This
becomes critical as individuals and organizations increasingly
rely on these models for sensitive tasks, raising concerns about
service providers potentially modifying or substituting models
without client knowledge or consent. Even in the case of
reputable service providers, clients must place considerable
trust in them to deliver exactly what they claim to offer in
terms of model performance.

Existing solutions for LLMs identification broadly fall
into two main categories: watermarking and fingerprinting.
Watermarking works by embedding imperceptible markers
within the model output during the generation process, which
can later be detected through algorithmic analysis tools. Yet,
this technique is vulnerable to adversarial attacks through
paraphrasing or text modification, which can obscure the
watermark [4], [5]. Unlike watermarking, fingerprinting does
not embed markers but rather identifies the model based on the
unique inherent characteristics in its generated output. Finger-
printing can be passive, analyzing the model output looking for
any statistical or stylistic pattern. However, this is susceptible
to text manipulation attacks [6]. Active fingerprinting, on the
other hand, requires carefully designed prompts to elicit a
specific model response for its identification [7], [8]. While
robust, the active fingerprinting technique is computationally
intensive and requires access to the model weights for fine-
tuning and response alignment. Overall, both verification tech-
niques operate in a post-hoc manner, analyzing the model
output after generation.

In this paper, we investigate whether autoregressive lan-
guage models can be uniquely identified from their token gen-
eration timing patterns as they stream their responses. Specif-
ically, we measure and analyze Inter-Token Times (ITTs)—
the temporal intervals between consecutive tokens—that arise
from the autoregressive generation process to determine if
they can serve as a reliable fingerprint. Through extensive
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Fig. 1: ITTs of six different SLMs. Each SLM was given the same prompt and instructed to repeat identical text to ensure
the generated output is identical across all models. All SLMs were run on the same Graphics Processing Unit (GPU) and
machine. Notice the distinct differences in latency, spikes, periodicity, and jitter, which together form each model’s unique
timing “fingerprint”.

analysis, we show that these ITTs form a unique “rhythm” or
signature that depends on the model’s architecture, parameter
size, and underlying hardware. As illustrated in Fig. 1, Small
Language Models (SLMs) with similar parameter sizes or
from the same family exhibit distinct ITTs pattern different
from other models despite generating identical tokens and
running on the same GPU. Each model has a unique temporal
signature, characterized by variations in latency, periodicity,
timing spikes, and subtle fluctuations in ITTs across the
generated tokens sequence.

When autoregressive language models are accessed re-
motely via encrypted channels, these unique token generation
timing patterns are preserved and propagated through the
network as the models stream their responses to clients in
real-time. Despite varying network conditions (e.g., latency,
jitter, routing) and protocol overhead (e.g., encryption, pack-
etization), these timing characteristics remain observable in
network traffic and provide a reliable fingerprint for model
identification.

To capture this fingerprint, we design and implement a
DL- base pipeline that processes network traffic data and
performs feature engineering extracting 36 features. These
features are then passed to a hybrid DL architecture consisting
of Bidirectional Long Short-Term Memorys (BiLSTMs) layers
with a multi-head attention mechanism to identify the model.
We conduct extensive evaluations of our proposed technique
on both open-source SLMs and proprietary LLM.

Our experiments span a wide range of deployment sce-
narios, including local GPU/CPU deployment, LAN, remote
networks, and VPN. Across these experiments, the results
consistently demonstrate the effectiveness and robustness of

our approach in identifying language model families and
distinguishing between model variants. These findings provide
a new perspective on model identification and ensure greater
trust and integrity in their usage.

Our contributions can be summarized as follows:

• We demonstrate that autoregressive language models ex-
hibit unique temporal patterns during token generation
and propose a novel passive, real-time fingerprinting
technique that leverages these unique patterns for model
identification in both local and remote network scenarios.

• We design and implement an end-to-end pipeline that
processes network traffic, extracts 36 timing and size
features to capture the language model’s fingerprint, and
employs a hybrid BiLSTM-attention model to classify
language models based on these features.

• We validate our approach through comprehensive exper-
iments on 16 SLMs and 10 proprietary LLMs across
various deployment scenarios (local host, LAN, remote
network, VPN). Our results demonstrate the technique’s
effectiveness and robustness in identifying both model
families and specific variants, even under different net-
work conditions.

Paper Organization. Section II provides background and
related work; Section III formulates the problem; Section IV
presents our scenario and adversary model; Section V details
the proposed methodology and experimental setup; Section VI
reports the experimental results and analysis; and finally,
Section VII concludes the paper.



3

1 "Large"

2 "Large" "Language"

3 "Large" "Language" "Models"

4 "Large" "Language" "Models" "predict"

5 "Large" "Language" "Models" "predict"

t₁ t₂ t₃ t₄ t₅Δt₁ Δt₂ Δt₃ Δt₄

"next"

Fig. 2: The autoregressive token generation process in LLMs. At each step (1-5), the model uses all previous tokens (shown in
dashed boxes) as a context to predict the next token, then append the new token to the sequence. Generated tokens are shown
with corresponding timestamps (t1...t5). ∆t represents inter-token times between consecutive tokens generations.

II. BACKGROUND AND RELATED WORK

The development of language models is built upon decades
of research and technological advancement [9]. In particular,
the early 2000s and 2010s marked a significant milestone in
the evolution and progress of language models. Starting with
the groundbreaking work in [10], which introduced the first
probabilistic language model based on neural networks, and
laid the foundation of using word embeddings and applying
DL in Natural Language Processing (NLP). Following that,
the work in [11], [12] enhanced word representation to capture
semantic relationships more efficiently than earlier techniques.
By 2017, the field of NLP witnessed a paradigm shift with the
introduction of the Transformer architecture [13]. Traditional
architectures such as Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) suffered primarily from
limitations in capturing long-term dependency and had to
process text sequentially which made their training and in-
ference slow and computationally expensive [14]. In contrast,
the Transformer architecture addressed these issues through
self-attention and positional encoding, which enabled paral-
lelization and effective handling of long dependencies. This
breakthrough has laid the groundwork for modern LLMs such
as GPT and LLaMA, which scale to billions of parameters.

At their core, LLMs operate in an autoregressive manner,
generating text one token at a time based on previously
generated tokens and learned contextual embeddings. A token
(e.g., a word or subword) is the basic unit of text pro-
cessed and generated by the language models and is typically
selected based on the highest probability of being next in
the sequence. This iterative process continues until either a
maximum sequence length is reached or a special end-of-
sequence token is generated. Fig. 2 shows the sequential
autoregressive token generation process in LLMs. At inference
time, the generation speed of a language model is primarily
determined by factors such as its architecture, parameter size,
and hardware parallelization capabilities. Although these large

models achieve state-of-the-art performance in a wide range of
NLP tasks, their computational complexity and massive size
require specialized hardware to run efficiently. Hence, most
LLMs are deployed in cloud data centers that can supply the
required computational resources. As the adoption of LLMs
such as ChatGPT, Gemini, and LLaMA becomes widespread,
concerns about the security and privacy implications asso-
ciated with these models have also grown [15]–[18]. Issues
such as distinguishing between machine- and human-authored
content, safeguarding intellectual property, and training models
on stolen data are among the primary concerns. Researchers
have been actively developing a variety of LLMs fingerprinting
and detection techniques aiming to address these challenges.

Two primary approaches have emerged in response to
these issues: watermarking and fingerprinting. Watermarking
embeds identifying markers into the model-generated output to
trace its origin and verify its authenticity. These markers are
imperceptible to humans yet detectable through algorithmic
methods. For instance, pioneering work by authors in [4]
introduced a watermarking framework that modifies the output
distribution by selecting a randomized set of ”green” tokens
before generating each word. Then, during the sampling
process, the model softly promotes the use of these green
tokens to create a statistical pattern without degrading the text
quality. However, such methods are vulnerable to adversarial
attacks, including text paraphrasing and token manipulation,
which can compromise the watermark’s integrity and relia-
bility [19]. In contrast, fingerprinting focuses on detecting
inherent patterns or characteristics in the model outputs to
identify the generative model. Fingerprinting techniques can
be categorized broadly into two main approaches: passive and
active fingerprinting.

Passive fingerprinting analyzes the intrinsic characteristics
of the model output by examining its lexical and stylistic
patterns. For example, authors in [6] found that LLMs produce
unique linguistic patterns and writing styles, such that even
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simple n-gram and part-of-speech distribution analysis can
serve as effective fingerprints. These subtle variations in the
frequency of specific lexical and syntactic features can differ-
entiate between human- and machine-generated texts, as well
as between different model families, such as GPT and LLaMA.
The study also found that models within the same family
often share similar fingerprints, even across different model
sizes. Although this method requires no model modification
or special queries, it is vulnerable to adversarial attacks that
obscure the fingerprint through text manipulation. Another
passive fingerprinting strategy introduced in [20] exploits
memory usage patterns to identify the architectural family of
LLMs deployed on edge and embedded devices. The key idea
is that different LLM architectures exhibit distinct memory
usage patterns during inference. By collecting high-resolution
memory usage traces via the tegrastats tool and training a
ROCKET model from the Sktime library, the authors effec-
tively classified even previously unseen LLM families with an
average accuracy of 92%. Alternatively, active fingerprinting
methods, which require direct interaction with the model, can
be further categorized based on their level of access.

In black-box active fingerprinting, specific queries or
prompts are sent to the model to elicit responses that aid
in its identification. These methods typically assume limited
access to the model–often via an API or by observing its
outputs. For example, [7] proposed LLMmap, a novel black-
box active fingerprinting technique that sends carefully crafted
queries to the target application and analyzes the responses
to identify the specific LLM version in use. Their query
selection is informed by domain expertise on how LLMs
generate uniquely identifiable responses to thematically varied
prompts. The targeted query families include banner grabbing,
alignment-based prompts, and malformed queries. With as few
as 8 interactions, LLMmap achieves over 95% accuracy in
identifying 42 different LLM versions, including both open-
source and proprietary models. Similarly, [8] proposed Hide
and Seek, a black-box approach using an Auditor-Detective
framework. In this method, one LLM (the Auditor) generates
discriminative prompts, while another LLM (the Detective)
analyzes the responses to determine family relationships. This
approach achieved 72% accuracy in distinguishing between
popular architectures such as LLaMA, Mistral, and Gemma.

On the other hand, white-box active fingerprinting assumes
full access to a model’s weights and architecture. This level
of access enables researchers to deliberately embed a unique
signature or pattern into the model during the training or fine-
tuning phase for ownership verification. For example, authors
in [21] introduced novel cryptographic fingerprinting tech-
niques called Chain and Hash to prove the ownership of LLM
models. Their approach involves generating a set of special
questions and answers, then concatenating each question with
all questions, all potential answers, and a secret key using
a secure hashing function like SHA-256. This fingerprint is
then incorporated into the model through fine-tuning, with
additional measures like meta-prompts and random padding to
enhance the robustness. The verification process is performed
by querying the model with the fingerprinting questions and
checking whether it produces the expected responses. Simi-

larly, [22] proposed a lightweight instruction tuning approach
to embed verifiable fingerprints in LLMs. This technique trains
models to generate predetermined outputs when presented
with carefully crafted multilingual character sequences (secret
keys). Remarkably, using only 60 training instances, this
technique demonstrated perfect fingerprint retention across 11
different LLMs, even after extensive fine-tuning.

Despite these advances, existing LLMs watermarking and
fingerprinting methods have several limitations. Watermarking
techniques are often vulnerable to adversarial attacks, while
some fingerprinting methods are computationally intensive and
require access to model weights. To address these challenges,
we propose a novel passive fingerprinting technique that iden-
tifies language models in real-time by leveraging their intrinsic
ITTs characteristics, that are inherently difficult to manipulate
or obscure via adversarial attacks. Furthermore, our approach
is computationally efficient and can be deployed for online
detection and monitoring, offering fine-grained fingerprinting
capabilities that accurately distinguish between model families
and even their variants.

III. PROBLEM FORMULATION

In this section, we establish the theoretical foundation of the
proposed fingerprinting technique. We begin by formalizing
the autoregressive generation process inherent in LLMs and
defining the concept of token. We then demonstrate how these
tokens are transmitted in network packets, showing how timing
patterns and packet sizes can serve as distinctive fingerprints
of the underlying model. Finally, we define our classification
framework and focal loss objective.

Token Definition. A token is the basic unit of input or
output text processed by a language model. Let M denote a
language model with a vocabulary V , such that each token si
∈ V may represent a word, subword, or individual character,
depending on the model’s tokenizer.

Token Generation Process. For each finite output sequence
of N tokens generated by M:

S = {s1, s2, . . . , sN} ⊂ V

where each si corresponds to the i-th token in the generated
text. Each token is generated at a specific time ti so that the
overall model output, annotated with timestamps, is given by:

(s1, t1), (s2, t2), . . . , (sN , tN )

Let T denote the sequence of timestamps associated with the
token generation, defined as:

T = {t1, t2, . . . , tN} ∈ RN
+

The Inter-Token Time (ITT) between consecutive tokens is
defined as:

∆ti = ti+1 − ti, i = 1, 2, . . . , N − 1.

Here, ∆ti measures the time required for the model (and its
underlying hardware) to generate the next token. In general, in
an autoregressive language model M each token si is drawn
from the model’s vocabulary V according to:
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P (si|s<i) = M(s1, . . . , si−1) (1)

with s<i representing all tokens generated prior to si. At
inference time, the autoregressive language model selects one
token at each step using different sampling techniques (i.e.,
greedy decoding, temperature sampling, or top-k sampling)
until an ending criterion is met.

From Tokens to Network Packets. While ∆ti captures
the generation pattern between tokens on the model side,
the output is typically observed via a streaming API or web
interface. Hence, in a networking scenario, tokens are bundled
into packets for transmission over the network (e.g., LAN or
Internet).Therefore, in this practical scenario, packet is the
measurable unit on the client side rather than the token.

Let P = {p1, p2, . . . , pM} denote the sequence of packets
received by the client. Each packet pi arrives at timestamp tai
and may contain one or more tokens from S such that:

pi = fpack(si, si+1, ..., si+m)

where fpack represents the packetization function and m the
number of tokens in packet i. Each packet pi is encrypted
before transmission:

penci = E(pi, key)

with E denoting the encryption function. The packet arrival
time tai is different from the generation time due to network
latency (l) and jitter (ϵ):

tai = ti + l + ϵ

On the client side,the inter-arrival time of packets is measured
as:

∆tpi = tai+1 − tai , i = 1, 2, . . . ,M − 1

his value is affected by both the language model’s inter-token
times ∆ti and network and protocol overhead (i.e., encryption,
packetization, jitter, delays, etc.). Packet sizes are denoted as
{|pi|}.

Despite all these added complexities, we hypothesize that
the language model’s token generation pattern is preserved
and remains detectable from these inter-arrival times ∆tpi and
packet sizes {|pi|} unless an obfuscation technique is applied
at the server side.

Feature Extraction. We define a feature-extraction function
that maps the raw {∆tpi } and {|pi|} to higher-level features
(e.g., burst rate, timing entropy, size-time correlation):

ϕ
(
{∆tpi }, {|pi|}

)
−→ Rd

In our implementation, we extract 36 engineered features from
the raw inter-arrival times {∆tpi } and packet sizes {|pi|}
(see Appendix A for details). For each sliding window w
over the network data, we map these raw measurements to
a 36-dimensional feature vector x using a feature extraction
function ϕ, i.e.,

x = ϕ
(
{∆tpi }, {|pi|}

)
∈ R36

Classification Framework. Given a set of K candidate
LLMs, {M1, . . . ,MK}, our goal is to learn a classifier

f : Rd −→ {1, 2, . . . ,K}

.
Here Rd denotes the d-dimensional feature space derived

from the the feature-extraction map. We collect a dataset D
and label it as:

D = {(xi, yi)}Ni=1,

with xi ∈ Rd representing the ith sample corresponding
to the extracted features vector for a window w of observed
network packet sequence (comprising inter-arrival times and
sizes), and y ∈ {1, . . . ,K} denoting the true label correspond-
ing to the model Mk that generated that traffic snippet.

Given Dataset D, we train a deep neural network model
f(x; θ)(parameterized by θ) to output a probability distribution
over K classes:

f(x; θ) =
(
p1(x; θ), p2(x; θ), . . . , pK(x; θ)

)
where pk(x; θ) represents the predicted probability that

the feature vector x originates from model Mk, and the
probabilities satisfy

∑K
k=1 pk(x; θ) = 1.

Focal Loss Objective. To handle any potential class imbal-
ance, we use focal loss [23], which is defined as:

Lfocal(θ) = −
N∑
i=1

K∑
k=1

αk

(
1− pk(xi; θ)

)γ
1{yi=k}

log
(
pk(xi; θ)

)
(2)

where, for each sample i:

• pk(xj ; θ) is the predicted probability of class k.
• αk ∈ [0, 1] is an optional weighting factor to mitigate

class imbalance.
• γ ≥ 0 is the focusing parameter that increase emphasis

on misclassified samples.
• 1{yi=k} is the indicator that is 1 if yi = k and 0

otherwise.

By minimizing this focal loss, the classifier focuses on hard-
to-classify and underrepresented examples while reducing the
weight on easily classified examples. The final prediction for
a feature vector x is given by:

ŷ = arg max
k∈{1,...,K}

pk(x; θ
∗)

where the optimal model parameters θ∗ are found by
minimizing Equation (2) via gradient-based methods (e.g.,
Adam or SGD) during training:

θ∗ = argmin
θ

Lfocal(θ)

Once trained, f(·; θ∗) provides a mapping from the ex-
tracted network-traffic features to the predicted LLM identity.



6

User (𝓤)
Developer/Business

Adversary (𝓐)
Deceptive API Service

Legitimate Provider (𝓟 )

Prompt

Proxied Response

Proxied Prompt

Response

Fig. 3: Man-in-the-Middle attack scenario where an active adversary (A) provides a deceptive LLM API service, forwarding
the user’s prompt requests to a legitimate LLM provider (P) and relaying the responses back to the user (U).

IV. SCENARIO AND ADVERSARY MODEL

We consider a scenario involving three entities: the User
(U), typically a normal user or developer, who interacts with
what they believe to be a legitimate LLM API service to
perform tasks such as text completion or function-calling;
the Legitimate LLM Provider (P) (e.g., OpenAI, Anthropic,
or Mistral), who operates a production LLM service through
authenticated APIs; and an Adversary (A) acting as a Man-
in-the-Middle (MitM) in an active role. Fig. 3 illustrates the
adversarial scenario. The adversary A runs a deceptive API
service that claims to provide proprietary, state-of-the-art LLM
functionality, but in reality A forwards prompts from U to P
and simply relays the responses back to U . To avoid being un-
masked, A implements a filtering mechanism that detects and
blocks any attempts to query model identity before forwarding
prompts to P . In this scenario, since the LLM operates as a
streaming service, we assume A is incapable of obfuscating
the LLM fingerprint (e.g., by randomizing response timing)
as such obfuscation would degrade the quality of service,
raise suspicion, and compromise the effectiveness of their
deception [24]. By intercepting the prompts and responses of
U , A not only compromises the security of U , but also in-
fringes on P’s intellectual property rights and term of services.
Furthermore, A profits by charging users higher fees compared
to P’s pricing under the false claim of providing cutting-edge
model. In this context, U needs to verify the authenticity
of the provided LLM service before interacting with the
API system and sharing sensitive information. Our proposed
fingerprinting techniques utilizes a DL classifier trained on
known LLM fingerprints to identify the true underlying LLM.
This approach reveals whether the service is truly a proprietary
state-of-the-art model as claimed, or merely proxying requests
to an existing commercial LLM provider’s model.

V. METHODOLOGY

In this section, we discuss in detail our comprehensive
experimental framework to study and analyze the unique ITT
patterns of a variety of LLMs. We first describe the two types
of language models used in our study, along with the different
experimental scenarios to evaluate them. Then, we outline
the data collection and processing phase, followed by the
training and evaluation methodology. Finally, we report on our
hardware and software experimental setup. Our investigation
involves two primary categories of models: (i) open-source
SLMs running locally and (ii) proprietary LLMs accessed via
their Graphical User Interface (GUI) platforms. For each cat-
egory of language models, we conducted experiments across
different scenarios to evaluate the impact of factors such

as hardware configurations and network conditions on the
models’ token generation timing patterns.

A. Open-Source SLMs

To understand how LLMs generate their patterns and es-
tablish a foundation for our experiment, we collected clean
fingerprints from open-source SLMs deployed locally. Our
experiment includes 16 SLMs spanning five model families:
Gemma from Google [25], Granite3 from IBM [26], LLaMa
from Meta [2], Mistral7B and Ministral from Mistral [27],
and Phi from Microsoft [28], [29]. These models represent
diverse architectures and parameter sizes, ranging from 1B
to 9B parameters. Initially, we systematically analyzed SLMs
fingerprints by running identical models locally on both GPU
and Centeral Processing Unit (CPU). Through this compara-
tive hardware analysis, we aimed to investigate how underlying
hardware infrastructure impacts these temporal fingerprints.
Then, using GPU deployment, we evaluated the SLMs across
three distinct configurations simulating different real-world
scenarios. Starting with SLMs allowed us to establish a
controlled experimental foundation to analyze and trace their
temporal fingerprints from source to destination while simul-
taneously examining the factors impacting these fingerprints.
We hypothesize that if we can successfully capture fingerprints
generated by these SLMs, then LLMs fingerprints would be
more distinctive and detectable. This is because LLMs have
significantly more complex architecture and larger parameter
sizes (ranging from tens to hundreds of billions) compared
to SLMs, which significantly increases their computational
footprint and as a result creates more distinct temporal patterns
in their token generation process. Our deployment setups
include three different scenarios:

Local Host Deployment. In this setup, the client and
server are running on the same Linux Ubuntu machine. This
configuration eliminates external network overhead since all
data transfer occurs within the system, providing an ideal
environment for capturing clean SLMs fingerprints without
network variability or latency.

LAN Deployment. In this setup, the client and server
where SLMs are deployed operate on two separate machines
and are connected via the same LAN. On the client side,
a Python script automates the process of sending predefined
prompts and listening to the streamed response as it is being
generated from the Ollama server on the other machine.
Meanwhile, Tshark captures the incoming packets and filters
them according to their IP addresses. The communication
between the two devices is not encrypted, and tokens are
packetized during transmission. This configuration allows us to
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observe how the SLMs fingerprint behaves in a controlled local
network environment with minimal latency and variability.

Remote Deployment via Internet. In this setup, we aim
to investigate the impact of real-world internet conditions on
SLMs fingerprint. To achieve this, we enabled remote access
to the Ollama server over the internet using the Cloudflare
tunneling service. The client machine is located in Sweden,
while the Ollama server where the SLMs are hosted and
running is located in Qatar. This geographical distribution
introduces typical internet-based network conditions to the
SLMs fingerprints.

SLMs Prompting. We crafted and used a diverse set of
prompts, ranging from simple factual questions to complex
analytical topics of different lengths, complexity, and response
types. Through this methodology, we aimed to simulate real-
istic usage of these SLMs and ensure that each model demon-
strates its unique token generation behavior under different
prompting conditions.

B. Proprietary LLMs

Next, we extended our experiment to include real-world
scenarios by accessing proprietary LLMs over the internet.
We selected three families of widely-used proprietary models:
OpenAI’s GPT series (including GPT-4, GPT-4o, and GPT-
4o mini), Anthropic’s Claude (Sonnet 3.5, Opus, and Haiku),
and Mistral (Pixtral Large, Mistral Large2, Mistral Small, and
Mistral Nemo). At the time of writing, these models rep-
resent state-of-the-art LLMs, featuring diverse architectures,
parameter sizes, and operational infrastructures. We captured
the network traffic of these models and trained a hybrid DL
model, then tested the same trained model under the following
different scenarios:

Different Day. To evaluate the consistency and persistence
of the LLMs fingerprints over time, we collected the training
data on one day and the test data on a different day. Through
this experimental design, we aim to examine whether LLMs
fingerprints remain stable despite temporal variations in the
models’ operational environments, including variability in
server load and network conditions at both the client and server
endpoints.

Different Network. Network conditions can significantly
affect the quality of observed LLMs fingerprints. To evaluate
the impact of network conditions and to validate the network-
agnostic nature of LLMs fingerprints, we trained our detection
model using data collected from one network location and
tested it using data collected from a different geographical
location. This cross-network evaluation assesses the model
ability to generalize across different network environments.
In particular, we investigate whether the fingerprint char-
acteristics remain distinguishable despite inherent variations
in network conditions such as latency, jitter, and bandwidth
between different locations.

VPN. To further validate our proposed technique, we con-
ducted an additional experiment under more complex network
conditions. Specifically, we accessed the proprietary LLMs
using Virtual Private Network (VPN) with an exit node located
in a different geographical region. By introducing this proxy

layer, we aimed to determine whether the LLMs fingerprint
remains observable despite the additional encryption, routing,
and processing overhead introduced by VPN. In essence, we
evaluated how well the detection model trained under normal
network traffic conditions performs in this more challenging
scenario.

LLMs Prompting. Similar to open-source SLMs we crafted
diverse prompts to interact with the proprietary LLMs through
their GUI website. These prompts varied in length, complexity,
and topic, ranging from simple question-answer exchanges
to extended chains of prompts that establish deep contextual
dependencies. With this comprehensive prompting technique,
we aimed to capture LLMs fingerprints under realistic usage
scenario that reflect typical user interaction with such models.

The primary goal of performing these experimental sce-
narios is to demonstrate that LLM fingerprints are inherent
characteristics of the models themselves, persisting regardless
of temporal variations, network configurations, and routing
infrastructures.

C. Data Collection and Processing

In the data collection phase, we acquired data using a
wired connection throughout the different experiments, as it
provides greater stability and reliability in measuring traffic
patterns. We applied filters in Tshark and Wireshark to capture
only inbound, data-only traffic—excluding server-related and
control packets—to focus solely on the data packet patterns
relevant to the analysis. The captured network traffic raw data
was stored in a PCAP file and consisted of traffic packet sizes
and their arrival times. As described in Algorithm 1, the data
processing pipeline begins with the extraction and prepro-
cessing of raw network traffic data. Specifically, we extract
two fundamental components from the raw network traffic:
packet arrival timestamps (Ti) and corresponding packet sizes
Pi. From the timestamps, we compute the inter-arrival times
(∆Ti) between consecutive packets to capture the temporal
signature of the LLMs and form the foundation for our finger-
printing methodology’s feature extraction process. Following
this phase, we perform data de-noising to remove anomalies
and address any missing or invalid values. This preprocessing
step ensures that our subsequent feature extraction phase is
based on clean and reliable data that accurately represent each
model’s generation pattern.

D. Features Engineering

Next, we apply feature engineering to the extracted raw
network traffic data. As the LLMs responses are transmitted
over networks, they experience various noise factors and
delays, making it infeasible to rely only on raw data (i.e.,
packet inter-arrival times and packet sizes) for accurate model
identification. To address this limitation, we implement a
feature engineering process as illustrated in Algorithm 2.
The primary objective of feature engineering is to enhance
data representation, reduce noise, and better capture the un-
derlying patterns in the stream of LLMs packets. Using an
iterative empirical process based on the two essential features–
inter-arrival times and packet sizes–we extract a total of
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Algorithm 1 Data Extraction and Preprocessing

1: Input:
2: N : Number of LLMs
3: Di: Raw network traffic data for each LLM Li, where

i = 1, 2, . . . , N
4: Output:
5: Cleaned inter-arrival times ∆Ti and packet sizes Pi for

each LLM

6: for each LLM Li, i = 1 to N do
7: Extract packet arrival times Ti = {t1, t2, . . . , tn} from

Di.
8: Extract packet sizes Pi = {p1, p2, . . . , pn} from Di.
9: Compute inter-arrival times ∆Ti =

{∆t1,∆t2, . . . ,∆tn−1} where ∆ti = ti+1 − tj .

10: Clean and preprocess data:
11: – Remove anomalies and outliers.
12: – Handle missing or invalid values.
13: end for

36 engineered features that focus on metrics revealing the
model’s token generation behavior. These features span six
main categories: rate and throughput metrics (e.g., maximum
burst rate and packet rate); inter-arrival time statistics (e.g.,
mean inter-arrival time and percentile distributions); pattern
and regularity metrics (e.g., timing regularity and permutation
entropy); timing change dynamics (e.g., mean time change and
timing acceleration); correlation and combined metrics (e.g.,
size-time correlation and size-time products); and burstiness
and entropy metrics (e.g., burstiness measure and inter-arrival
time entropy). All these features collectively measure different
aspects of the model’s token generation behavior. Our aim
is to recognize the “rhythm” of each LLM by detecting and
analyzing the temporal changes in network activity within a
small time window. We apply a sliding window of 0.5 seconds
with a step size of 0.1 seconds to the raw network traffic data,
which consists of packet sizes and inter-arrival times. These
parameters were determined through extensive empirical eval-
uation, during which we tested various combinations. Within
each data window, we compute a set of statistical and temporal
features for that sample of data and label the resulting feature
vector with the corresponding LLMs class Li. The complete
mathematical formulas and detailed calculations for all derived
features are provided in Appendix A.

E. Training

We designed a hybrid DL architecture that combines mul-
tiple BiLSTM blocks with a multi-head attention mecha-
nism to capture sequential long-term dependencies in network
traffic patterns while focusing on the most discriminative
features. This hybrid architectural approach has been suc-
cessfully adopted in several contributions to network traffic
analysis [30], [31]. As illustrated in Fig. 4 our model consists
of three BiLSTM blocks with decreasing units to progressively
refine the temporal features throughout the network. After each
block, we added batch normalization to stabilize training and

Algorithm 2 Feature Engineering

1: Input:
2: Cleaned inter-arrival times ∆Ti and packet sizes Pi for

each LLM
3: w: Sliding window size
4: s: Step size for sliding window
5: Output:
6: Feature vectors xi labeled with LLM Li

7: for each LLM Li, i = 1 to N do
8: for each window w over ∆Ti and Pi with size w and

step s do
9: Extract features:

10: – Statistical features (mean, variance, percentiles)
of ∆t and p.

11: – Temporal features (burstiness, entropy).
12: – Advanced features (permutation entropy, LIS).
13: Label feature vector xi with LLM Li.
14: end for
15: end for

dropout layers (rate = 0.3) to prevent overfitting. Following the
first BiLSTM block, an 8-head attention mechanism with a key
dimension of 128 is applied, followed by batch normalization
layer. A residual connection then adds the attention output
back to the initial BiLSTM block’s output to preserve the
original temporal features and ensure efficient gradient flow
before passing them to the second BiLSTM block. Finally,
the architecture concludes with two dense layers (128 and 64
units) followed by batch normalization and a softmax layer to
produce the final classification probabilities.

The training pipeline, outlined in Algorithm 3 consists of
several stages optimized to handle network traffic data. The
process starts with data preparation, where the input dataset
D containing the feature vector xi and corresponding labels Li

is partitioned into training and validation sets. Next, the data
is preprocessed using a per-sample normalization technique to
standardize each input within a time window independently,
preserving the relative temporal patterns while mitigating the
effects of varying network conditions. To address the class
imbalance problem where some LLMs have more data samples
than others we used two strategies: class weighting and focal
loss. This combination prevents bias towards overrepresented
classes and maintains sensitivity to undersampled events.
During data preparation, we again use the sliding window
technique with window size w = 128 and step size s = 4
to segment the temporal sequences. This creates overlapping
windows that preserve the temporal continuity of the LLM
generation patterns and provide sufficient training samples.
We selected a batch size of 64, and trained the model for
30 epochs, as the standard deviation of accuracy in the last
10 epochs remained below 0.01, indicating convergence and
training stability. It is worth noting that upon completion of
the training phase, we tested the model on a newly collected
dataset for each testing scenario.
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Fig. 4: Attention-based BiLSTM architecture for SLMs and LLMs traffic classification.

Algorithm 3 Model Training

Require:
1: Dataset D = {(xi, Li)} of feature vectors and labels
2: Number of training epochs T
3: Hyperparameters (learning rate η, batch size, etc.)

Ensure:
4: Trained classification model f

5: Split D into training set Dtrain and validation set Dval
6: Preprocess data with per-sample normalization and adap-

tive noise
▷ Compute class weights for imbalanced data

7: Calculate class frequencies from training labels
8: Set wi =

√
max(freq)/freqi for each class i

▷ Model initialization and compilation
9: Initialize model f with BiLSTM-Attention architecture

10: Initialize Focal Loss with α = 0.25, γ = 2.0, and class
weights wi

11: Set Adam optimizer with learning rate η
12: for epoch t = 1 to T do
13: Train model f on Dtrain
14: Validate model f on Dval
15: Update model parameters based on loss
16: end for

F. Evaluation

Given the imbalanced nature of the dataset after applying the
preprocessing phase, using traditional accuracy metric can be
misleading to report on the model’s performance. Instead, we
consider the following evaluation metrics to assess the model’s
classification performance:

Precision =
TP

TP + FP
(3)

where precision measures the proportion of correct positive
predictions, reflecting the model’s accuracy in identifying
specific LLM x such that out of all times the model identified
x how often it was correct.

Recall =
TP

TP + FN
(4)

where recall measures the model’s ability to find all instances
of a specific LLM x, such that out of all actual occurrences

of x in the data, how many were correctly identified by the
model.

F1 Score =
2× Precision × Recall

Precision + Recall
(5)

where the F1 score provides a balanced metric for the
harmonic mean of precision and recall, especially in cases
when evaluating model performance across different LLMs
with varying frequencies in the dataset. In addition to the
previous metrics, we present a confusion matrix for each
conducted experiment to provide a comprehensive evaluation
of the model’s classification performance across all classes.
The evaluation process, as shown in Section VI, is conducted
on a completely new collected data.

G. Experimental Setup

We evaluated our proposed solutions using both open-source
SLMs and proprietary LLMs. Specifically, we deployed 16
SLMs running locally on consumer-grade GPUs and CPUs.
These open-source lightweight models were installed using Ol-
lama (version 0.3.14), an open-source platform that simplifies
the installation and running of LLMs locally. In contrast, the
proprietary models, including ChatGPT, Mistral, and Claude,
were accessed through their web-based GUI.

1) Hardware Configuration: For data collection, process-
ing, deployment of open-source SLMs, and training of the
classification model, we used a local machine with the follow-
ing specifications. Our system was equipped with an NVIDIA
RTX 4090 GPU, providing 24 GB of VRAM to support high-
speed inference and efficient handling of SLMs parameters and
architectures. This GPU was used for both SLM deployment
and training of the classification models at a later stage. The
system’s processor was an Intel Core i9-13900K featuring 24
cores (8 performance cores and 16 efficiency cores) with a
maximum clock speed of 5.8 GHz. To meet the memory de-
mands for our computational task, the machine was equipped
with 128 GB of DDR5 RAM operating at 5200 MHz.

2) Software Setup: The host machine was running Ubuntu
24.04.1 LTS. Automation of tasks such as prompting the
SLMs, data collection, and processing was implemented using
scripts written in Python 3.11.5. Several Python libraries were
used, including requests for HTTP communication with the
Ollama server running on port 11434 (configured to serve
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all 16 models), json for parsing model responses, csv for
data logging and storage, and datetime for precise timestamp
handling. To capture network traffic, we integrated tshark
directly within the Python script for the locally deployed
SLMs, while Wireshark was used for proprietary models
during the prompting process [32]. For implementing and
training the DL model, we used TensorFlow 2.15.0 managed
through Miniconda environment manager (version 24.1.2). As
for remote access to the Ollama server and to prompt the
locally deployed open-source SLMs over the internet, we
used the Cloudflare Tunneling service to establish a secure
connection to the local machine. During VPN-based testing,
we used Surfshark VPN to introduce network obfuscation
and evaluate VPN network impact on the model classification
performance.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results by eval-
uating our proposed fingerprinting technique on two categories
of language models: open-source SLMs running locally, and
proprietary LLMs accessed through their websites. For SLMs,
we first investigated their temporal patterns across different
deployment scenarios, including local hardware configurations
(GPU/CPU), LAN environment, and remote network access,
where we developed a DL classification model to establish the
feasibility of fingerprinting in challenging network conditions.
For proprietary LLMs, we trained a classification DL model
and evaluated its robustness by testing it on data collected
on a different day, in a different network, and through VPN
connection.

A. Open-Source SLMs

As an experimental baseline to understand and measure
the unique ITTs that serve as a fingerprint for generative
language models, we conducted experiments on 16 open-
source SLMs from five leading companies in language model
development. Due to hardware constraints and the high mem-
ory and GPU requirements of larger open-source LLM (e.g.,
Gemma 27B [25], or LLaMA 90), we experimented with
model sizes ranging from 1B to 9B parameters. These models
are considered small and are computationally feasible to run on
consumer-grade hardware. We studied these SLMs across three
different deployment scenarios: (i) local host where both client
and server run on the same machine, (ii) LAN where both run
on separate machines within the same network and (iii) remote
deployment where client and server communicate over the
internet. By adopting this controlled incremental approach, the
objective is to establish a ground truth for our investigation and
study the phenomenon analytically and progressively before
applying any complex machine-learning techniques.

Local Host Deployment. In this scenario, both the server
where the SLMs inference is performed, and the client prompt-
ing the models reside in the same machine. This setup allowed
us to collect a clean fingerprint by eliminating any network-
related factors and focusing purely on the intrinsic ITTs spe-
cific to each language model. To study the hardware impact on
model generation characteristics, we ran the same experiment
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Fig. 5: Mean ITTs for different SLMs families deployed on
GPU. Colors represent models’ family. Error bars represent
standard deviation from the mean.
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Fig. 6: Probability density distribution of ITTs for SLMs local
host deployment.

on both GPU and CPU installed in the same machine. By
running SLMs on the CPU, we considered the worst-case
scenario where such models may be deployed on hardware
with significant resource constraints. All SLMs were prompted
with identical prompts to ensure fairness, consistency, and
validity in the comparison across all models. During the
response generation process, the Ollama server recorded each
token with created at field indicating the creation timestamps.
We used this feature to compute the overall mean ITTs for
each SLM across all generated outputs.

Deployment on GPU: First, we analyzed ITTs for the 16
SLMs deployed on the NVIDIA RTX 4090 GPU. As shown
in Fig. 5 each model exhibits a distinct ITT profile different
from the other models, even those within the same family
demonstrate distinguishable temporal signature. Furthermore,
we observed a clear correlation between model size and mean
ITT such that models with larger parameter sizes tend to
have longer mean ITT as they require more computational
resources. This trend is particularly prominent within models
of the same family and holds true across all families, though
with varying degrees of scaling proportional to model size.
For example, Gemma family which has the widest temporal
range, demonstrate the most pronounced size-dependent linear
scaling relationship with Gemma2 (9B), showing the longest
mean ITT of approximately 0.0099 seconds nearly three times
that of its smaller (2B) parameter variants Gemma1 (2B),
which averages around 0.0031 seconds. Similarly, the LLaMA
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Fig. 7: Mean ITTs for different SLMs families deployed on
CPU. Colors represent models’ family. Error bars represent
standard deviation from the mean.

models demonstrate scaling with a moderate slope from 0.0029
seconds for LLaMA3.2 (1B) to 0.0070 seconds for LLaMA3
(8B). On the other hand, the Phi model’s family shows a
remarkable efficiency consistency across their variants with
ITTs differences (Phi1 (2.7B) 0.0038s, Phi3 (3.8B): 0.0042s,
Phi3.5 (3.8B): 0.0044s).

The standard deviations for GPU deployments are notably
low, indicating stable and consistent ITTs. To complement our
analysis and obtain a deeper understanding of the temporal
patterns, we plotted the distribution of ITTs as probability
density functions as illustrated in Fig. 6. As confirmed by the
previous figure’s result, each model exhibits a unique temporal
distribution pattern with minimal overlap, even among models
of similar parameter sizes from different families. The shapes
of these distributions reveal another unique characteristic such
that some models like LLaMA3.2 (1B) and Gemma (2B)
show sharp, narrow peaks indicating very consistent timing
, while others like LLaMA2 (7B) show broader distributions
indicating greater timing variability. These variations in dis-
tribution shapes are observable both across models of similar
parameter sizes and among variants within the same model
family. This result reveals several key insights about model
generation patterns.

While architectural similarities within a model family can
create shared temporal behavior patterns, each model still
produces its own unique, identifiable signature due to dif-
ferences in parameter sizes and specific optimization tech-
niques. Furthermore, the unique distribution shapes observed
between models of similar parameter sizes suggest that these
differences stem fundamentally from the architectural design
of these models. Overall, these findings establish a strong
foundation for our hypothesis that autoregressive language
models can be identified through a novel lens using their
temporal pattern during the token generation process. This
approach enables discrimination not only between model fam-
ilies but also among specific variants within them, potentially
serving as a complementary method to current fingerprinting
techniques.

1) Deployment on CPU: As anticipated, due to the lim-
ited parallel processing capabilities of the CPU, the mean
ITTs for SLMs inference are significantly longer compared
to GPU execution times, as shown in Fig. 7. Specifically,

the mean ITTs on CPU range from 0.02 to 0.14 seconds,
wich is approximately an order of magnitude slower than
GPU execution times of 0.003 to 0.01 seconds. Furthermore,
the relation between model parameter size and inference
speed is amplified on CPU, with larger models experiencing
proportionally greater slowdowns compared to their perfor-
mance on GPU. Moreover, CPU performance shows more
timing variability demonstrated by larger error bars in the
measurement. This trend is more noticeable in larger model
families like Gemma and LLaMA. These results demonstrate
that hardware configuration is a fundamental significant factor
in determining ITTs of any language model alongside other
characteristics such as model architecture, number of parame-
ters, and the optimization techniques used. However, this hard-
ware dependency does not prevent the practical applicability
of our approach, as fingerprinting can be calibrated to the
deployed hardware, which typically remains unchanged in the
production environment, and can be recalibrated if hardware
changes occur.

Network Impact: Most language models, particularly those
with large weights, are accessed remotely over the internet
as a cloud-based services since they require specialized high-
end GPU and computing infrastructure, which is typically
not available to end-users. Therefore, we aim to investigate
how protocol overhead and network conditions may affect the
differentiability of language models based on their generation
timing patterns when their responses are transmitted to clients.
We test SLMs in two networking scenarios where language
models could be deployed: (i) a controlled LAN where both
the server running the model and the client reside within
the same network, and (ii) a remote deployment environment
where the models are hosted on an external network and
accessed through the internet.

LAN Deployment: As we move beyond local host inference,
network conditions and protocol overhead introduce additional
complexity. We progressively evaluate how this may impact
ITTs by testing that within a controlled LAN environment
with minimal latency and variability. Such an environment
closely resembles edge computing and Internet of Things (IoT)
networks, where devices communicate locally. In this scenario,
two machines communicate directly within the same subset
network without any encryption, with one acting as a client
and the other one as a server. Tokens generated by the Ollama
server are packetized before transmission, simulating a real-
time streaming scenario. In this context, a packet might contain
one or more tokens generated by the SLM; as a result, on
the client side, we instead shift our analysis to measure the
inter-arrival times between consecutive packets. Fig. 8 displays
the probability distribution function of the inter-arrival time
of packets for each SLM. Compared to the previous result
obtained within the local host machine (GPU based scenario)
in Fig. 5, the LAN network environment introduces minimal
additional variability, resulting in a slight shift and overlaps in
the timing distributions. However, the general model groupings
and relative performance characteristics remain recognizable
despite these network effects.

Remote Network (Internet): In our final deployment sce-
nario, we move from a controlled LAN to a fully remote
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Fig. 8: Probability density distribution of SLMs packet inter-
arrival times for LAN deployment.

network where real-world network conditions and protocol
overhead are introduced including encryption, packetization,
latency, jitter, routing variability, and potential congestion. Us-
ing Cloudflare’s tunneling service, we enabled remote access
over the internet to the Ollama server hosting the SLMs. The
client machine was located in Sweden, while the server hosting
the models was located in Qatar.

Our network path analysis revealed an 8-hop route travers-
ing multiple infrastructure, including regional ISP networks,
international transit points, and Cloudflare servers, each adding
a potential source of jitter, latency, and packet reordering. This
setup evaluates the models’ behavior under typical internet de-
ployment conditions where users access LLM services across
geographical distances. However, this scenario represents the
most challenging case for model identification, as network
effects can potentially mask or distort the underlying model-
specific timing patterns. Similar to the LAN deployment, we
leverage packet inter-arrival times to characterize models’
behavior.

A simple statistical analysis of the probability density
distribution depicted in Fig. 10 reveals a significant overlap in
packet inter-arrival time distributions among different SLMs.
Compared to both the local host and LAN scenarios, the
distributions are notably broader, and the distinction between
smaller and larger models is no longer visually apparent. This
makes it difficult to distinguish models’ identities based solely
on a simple statistical analysis. This observation is quanti-
tatively supported by Table I, which shows that local host
deployment models exhibit consistent performance, with mean
latencies ranging from 2.910ms (LLaMA3.2 1B) to 9.935ms
(Gemma2 9B) and remarkably low standard deviations (0.235-
1.141ms), indicating stable token generation. These timing
patterns strongly correlate with model size, as larger models
consistently show higher latencies.

On the other hand, the LAN environment introduces min-
imal additional overhead, with mean latencies increased by
only 0.2-0.8ms compared to the Local Host scenario, while
maintaining relatively low standard deviations. In contrast,
remote deployment dramatically impacts both latency and
consistency with mean latencies increased by factors of 15-
20x (ranging from 57.043ms to 176.024ms) and standard
deviations growing by two orders of magnitude (100-306ms).
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Fig. 9: Training and validation accuracy curve during model
training over 100 epochs on raw network traffic data versus
feature engineered data.

These findings indicate that real-world network conditions
such as those occurring over the internet introduce a significant
layer of complexity and variability into the timing patterns of
language models. Therefore, these results suggest that simple
timing-based identification methods are likely impractical for
real-world environments where clients access LLMs over
geographically distributed infrastructure. Reliable model iden-
tification under such conditions requires more sophisticated
approaches, combining machine learning techniques with ad-
vanced feature engineering to overcome these network-induced
confounding effects.

Fingerprinting SLMs Using Network Traffic and ML.
Network traffic analysis is an active research area to manage
and secure networks based on their traffic flow characteris-
tics [33]–[35]. Prior studies have leveraged statistical features
extracted from network traffic flow, particularly focusing on
packet size and inter-arrival time patterns, to classify applica-
tion data [36]–[38]. Machine Learning (ML) techniques have
demonstrated superior capability in handling noisy and com-
plex data, effectively extracting subtle and nonlinear features
that are typically beyond the reach of simple statistical mod-
els. In our experiments, model-specific patterns were clearly
distinguishable in local-host and LAN deployment scenarios;
however these patterns became obscured in the remote deploy-
ment scenario due to significant network noise and variability.
To overcome this issue, we explore the application of ML
techniques to learn and extractSLMs patterns from the data,
even under challenging scenarios characterized by high noise
and variability.

Using Network Traffic Raw Data: Before implementing any
advanced feature engineering techniques, we first investigate
whether raw network traffic data alone could effectively be
used to identify SLMs in remote deployment scenarios. This
baseline analysis aims to determine whether simple inherenet
patterns in raw traffic are sufficient to distinguish between
different SLMs, without relying on complex preprocessing or
feature extraction methods.
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TABLE I: Comparison of model statistics across Local Host, LAN, and Remote Network. Each environment reports the mean
and standard deviation of model timing.

Model Local Host LAN Remote Network
Mean (ms) Std (ms) Mean (ms) Std (ms) Mean (ms) Std (ms)

Gemma2:2b 4.757 0.532 5.073 5.992 92.491 140.935
Gemma2:9b 9.935 0.739 10.281 6.938 176.024 306.142
Gemma:2b 3.113 0.500 3.533 6.774 60.179 105.225
Gemma:7b 7.308 0.739 7.722 7.445 122.211 186.898

Granite3-dense:2b 4.264 0.592 4.536 5.808 77.297 124.723
Granite3-dense:8b 8.033 0.699 8.254 6.109 141.283 241.541
Granite3-moe:3b 7.229 0.235 7.478 5.443 130.655 200.566

Llama2:7b 6.197 0.577 6.388 5.013 125.487 186.944
Llama3.2:1b 2.910 0.446 3.203 5.741 57.043 100.862
Llama3.2:3b 4.353 0.535 4.682 6.115 80.970 125.695
Llama3:8b 7.044 0.628 7.349 5.957 124.175 184.154

Ministral:8b 8.612 0.649 8.678 5.406 114.694 158.620
Mistral:7b 6.291 0.603 6.568 5.547 115.432 187.360
Phi3.5:3.8b 4.416 1.141 4.833 6.479 88.051 137.776
Phi3:3.8b 4.223 0.811 5.045 9.410 83.558 134.219
Phi:2.7b 3.783 0.638 4.141 6.172 78.295 133.684

Fig. 9 demonstrates that our DL model is overfitting the
training data but fails to generalize to the validation, which
was split from the same data according to an 80/20 ratio. This
suggests that the neural network model with generalization, as
it overfits (memorizes) noisy training data but fails to perform
well on unseen samples even though they are from the same
distribution [39]. These findings demonstrate that raw network
traffic features alone are insufficient for reliable SLM finger-
printing using ML in remote deployment scenario. To address
this limitation, a more advanced feature engineering approach
is required to extract robust and discriminative characteristics
from the network traffic. After applying feature engineering to
raw network traffic data, the training and validation accuracies
show significant improvement and convergence as depicted by
the two red curves in Fig. 9. This convergence indicates that
the model is effectively learning generalizable patterns rather
than memorizing noise.
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Fig. 10: Probability density distribution of SLMs packet inter-
arrival times for remote deployment.

Advanced Feature Engineering: Given the limitations of
raw network features and the non-linear separability shown
in the probability distribution, we developed a comprehen-
sive feature engineering pipeline to capture the underlying
distinctive characteristics of SLM behavior. Specifically, our
feature engineering approach transforms raw network traffic
data into a rich set of discriminative higher-level statistical
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Fig. 11: SLMs classification results when accessed remotely.

and temporal features designed to be robust against network-
induced noise. Using a sliding window size of 0.5 seconds
and step size of 0.1 seconds over the sequence of raw
network traffic data, we compute 36 engineered features. These
features represent a mixture of rate-based metrics (e.g., maxi-
mum average rate, burst rate), temporal statistics (inter-arrival
times, entropy), correlation measures (size-time correlation),
and complexity indicators (permutation entropy, entropy rate).
The complete mathematical formulas of these features are
provided in Appendix A. Next, we trained our model, as
described in Section 3, using the extracted data with an input
size of 128, step size of 4, and batch size of 64. These
parameters were selected based on iterative tuning experiments
that yielded the best performance. The model was trained for
30 epochs and then evaluated on an entirely new dataset.
The effectiveness of this feature engineering and training
pipeline is shown in the confusion matrix in Fig. 11. The high
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Fig. 12: Precision, Recall, and F1-Score for SLMs classifica-
tion when accessed remotely.

values along the diagonal elements, indicate that the classifier
successfully recognizes most models. Several key observations
can be drawn from the classification results. Most models
are identified with high precision, with many achieving over
90%, such as Gemma2-9B, Granite3-moe-3B, and LLaMA3-
3.1B. Some confusion occurs between closely related models
from the same family, such as Phi3:3.8B and Phi3.5 3.8B,
which indicates similar behavior likely due to architectural
similarities. Further examination of the models’ performance
metrics in Fig. 12 reveals that the majority of models maintain
balanced precision, recall, and F1-scores above 0.85. The few
exceptions occur primarily within architecturally similar model
families, such as Phi models, where performance metrics drop
to around 0.6-0.7. These findings confirm the robustness of the
feature engineering approach and deep learning model in ac-
curately identifying SLMs fingerprints, even when the models
are hosted on remote networks environment characterized with
significant latency, jitter, and network-induced noise that could
potentially mask the underlying token generation patterns.

B. Proprietary LLMs

Building on our successful fingerprinting of open-source
SLMs, we validate our proposed solution on several popular
proprietary LLMs. These models present more challenging
scenarios as they are typically accessed through APIs and web
interfaces, which introduces additional complexities due to
server load balancing, content delivery networks, and network
condition variability. We selected 10 LLMs developed by
three leading companies in the field: OpenAI’s ChatGPT
models (ChatGPT-4, ChatGPT-4o, and ChatGPT-4o Mini),
Anthropic’s Claude models (Haiku, Sonnet, and Opus), and
Mistral’s models (Mistral-Small, Large2, Nemo, and Pixtral-
Large). It is worth noting that these models are configured to
stream their responses to clients, generating output in chunks
(e.g., word by word or token by token) and delivering it as it is
generated. For each model, we collected approximately 3,000
seconds of network traffic data for training. Following that,
we trained our model using the same configuration described
in Section 3. To evaluate the robustness of our fingerprinting
technique, we tested the model under three different challeng-
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Fig. 13: Model classification results on a different day.

ing scenarios. Each represents 1,000 seconds of network traffic
from realistic deployment scenarios that could potentially
impact the model’s generalizability and detection performance:

Different Day. First, we tested the model’s ability to main-
tain its performance consistency across test data collected on
a different day. This experiment aimed to determine whether
temporal factors, such as varying server load and network
condition variability, would significantly impact classification
accuracy. Interestingly, as shown in the confusion matrix in
Fig. 13, the model maintains strong classification performance
across most LLMs confirming its robustness against temporal
variability. Notably, the test results reveal several insights.
OpenAI’s models show some inter-family confusion, particu-
larly between ChatGPT-4o and ChatGPT-4, suggesting shared
architectural characteristics. Mistral’s models demonstrate ro-
bust identification with minimal cross-family confusion. On
the other hand, Anthropic’s models maintain clear separation
from other providers. This suggests that our fingerprinting
technique captures the underlying fundamental characteristics
of each model’s signature that remain consistent even when
tested on different days.

Different Network. Next, we tested the model on data
collected from a network in different geographic locations.
Specifically, while the training data was collected from a
network located in Qatar, the test data was gathered from
a network in Sweden. This way we can assess the model’s
generalizability and identify any potential bias toward the
network conditions where the training was performed. Figure
14 shows that despite the network change, most of the pre-
dicted models are correctly classified along the main diagonal
indicating strong generalization across different environments.
In particular, certain models such as Mistral-Small, Pixtral-
Large, and Opus remain distinctive and consistently recog-
nizable regardless of the testing environment. However, when
misclassifications occur among models, they tend to be from
within the same model family or from the same company.
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Fig. 14: Model classification results across the different net-
works.
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Fig. 15: Model classification result when VPN is enabled.

In other words, similarities in model architecture or originat-
ing from the same company’s servers may introduce some
occasional confusion. Overall, these results suggest that the
extracted fingerprints are not bound to a specific network setup
but rather maintain their discriminative power across different
network environments.

VPN. Another validation scenario involves testing the
model on data collected while the VPN is enabled and config-
ured to connect to a static server in Germany. In this setup, the
VPN introduces additional routing complexity and potential
timing pattern distortion. We evaluate the model’s resilience
to this type of network obfuscation by accessing the LLMs
through a VPN connection. As shown in the confusion matrix

in Fig. 15 the model continues to accurately recognize most
LLMs correctly. However, as observed in previous tests, there
is a slight increase in misclassification, particularly among
models from the same vendor or family. This effect is most
noticeable in Mistral models (Large2 vs. Nemo) and OpenAI
models (ChatGPT-4o Mini vs. ChatGPT-4). This suggests that
our fingerprinting approach remains largely effective, despite
some confusion among closely related models due to VPN
masking.

Model Comparison in Different Scenarios. As reported
earlier, the overall performance of the classification model re-
mains relatively high and robust even when tested in different
conditions. To evaluate the model performance in detail using
different metrics, Fig. 16 presents a comparative analysis of
the model’s Precision, Recall, F1-score, and weighted metrics
across all three scenarios considered in our testing experiment.
This comparative evaluation highlights how changing the
infrastructural and obfuscation-related conditions may impact
fingerprinting performance.

Different Day: The different day scenario achieves the
strongest performance across all metrics. In particular, F1
scores for most models surpass 0.85, with several achieving
around 0.95. Similarly, Precision and Recall follow a similar
trend, suggesting that temporal variations impact fingerprint
detection minimally. However, notable exceptions are Mistral-
Large2 and Sonnet 3.5, where their performance across all
three metrics is the lowest. This result indicates that the clas-
sifier’s performance remains relatively high despite temporal
variations.

Different Network: In the different network scenario,where
the test data was collected in a different geographic location,
we observe in Fig. 16 that most models experience varying
degrees of resilience. In particular, models such as Mistral-
Nemo, Mistral-Small, and Opus demonstrate remarkable ro-
bustness. On the contrary, models such as ChatGPT-4o Mini
exhibit the most significant degradation across all metrics. In
general, the results reveal that network conditions on the client
side indeed affect the model fingerprint, but the degree of
impact varies across models.

VPN: The VPN scenario represents a more challenging
scenario as the model performance degrades further compared
to both the different day and different network scenarios. Sev-
eral models that previously showed strong performance now
experience varying degrees of decline due to the additional
complexity, latency, and routing obfuscation caused by the
VPN. For example, models such as Mistral-Small and Mistral-
Nemo managed to maintain relatively strong performance.
In contrast, models such as ChatGPT-4o and Sonnet 3.5
experienced more degradation under the VPN conditions. This
suggests that while VPN may make model identification more
challenging, certain models retain their reliable distinct pattern
even under this scenario. Overall, as shown in Fig. 16d, the
weighted metrics demonstrate that the different day scenario
achieves the best performance (approximately 0.85), followed
by the different network scenario (approximately 0.75), while
the VPN scenario shows the lowest performance (approxi-
mately 0.7) across all weighted metrics (Precision, Recall, and
F1-score).
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Fig. 16: Performance comparison across different experimental scenarios. The plots show how classification performance varies
across different deployment conditions and model families, with (a) F1-score, (b) precision, (c) recall, and (d) weighted average
metrics.

Feature Visualization. While the classification metrics
showed the effectiveness of the model in recognizing LLMs
identities, it is critical to inspect how models process and
represent their distinctive characteristics internally. To visual-
ize these high-dimensional feature representations learned by
the network, we apply t-SNE dimensionality reduction to the
final layer outputs, projecting them into 2D space. As shown
in Fig. 17, t-SNE reveals that data points belonging to the
same model cluster together, forming spatially distinguishable
groups. This suggests that these non-overlapping clusters are
unique even after undergoing complex dimensionality reduc-
tion, indicating that these are inherent features of LLMs.
Moreover, the compactness of these clusters indicates stability
and consistency in the learned features, with tighter clusters
suggesting lower variability in the model’s behavior patterns.
Furthermore, models from the same provider tend to exhibit
similar behavior patterns, as shown by their close proximity
in the visualization space. For example, the ChatGPT family
models (ChatGPT-4, ChatGPT-4o, ChatGPT-4o Mini - shown
in blue shades) cluster near each other, with particularly tight
grouping between ChatGPT-4 and ChatGPT-4o. Anthropic’s
Opus and Haiku (brown shades) show some regions of overlap,
and Sonnet appears in close proximity to other Anthropic
models in certain areas. In general, this distinct separation
confirms the effectiveness of our feature engineering and
training pipeline in successfully capturing and distinguishing
the fingerprints of the LLMs.
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Fig. 17: t-SNE visualization using base model.

VII. CONCLUSION

In this paper, we demonstrated that autoregressive language
models have unique temporal generation patterns that can be
used for model identification even when responses are en-
crypted and transmitted over network remotely. We proposed
a feature engineering and training pipeline to capture the
underlying model’s signature and evaluated its effectiveness
on both SLMs and LLMs. Our method successfully identified
models with weighted F1 score 85% on different day, 74%
across different network, and 71% when accessed through
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a VPN, maintaining robustness despite network variability
and temporal changes. This work provides a robust, real-time
technique for language model identification at the network
layer and enhances the security and trustworthiness of systems
where language models are deployed.
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APPENDIX

NOTATION

TABLE II: Description of symbols used

Symbol Description
Bi Size of the i-th packet in bytes
∆ti Inter-arrival time between packet i and i+ 1
N Number of packets
w Window size
b Burst window size
x̄ Mean of x
σx Standard deviation of x

Pk(x) kth percentile of x

36 FEATURES DERIVED FROM RAW NETWORK TRAFFIC
DATA

RATE-BASED FEATURES

1) Maximum Average Rate

max
t

8 ·
∑t+w

i=t Bi

w

2) Maximum Burst Rate

max
t

8 ·
∑t+b

i=t Bi

b

3) Maximum Arrival Rate

max
t

1

mean(∆t)

4) Maximum Bytes per Second

max
t

t+1∑
i=t

Bi

5) Bytes per Window ∑
i Bi

w

6) Packet Rate
N

w

INTER-ARRIVAL TIME (IAT) FEATURES

1) Mean IAT

∆̄t =
1

N − 1

N−1∑
i=1

∆ti

2) Standard Deviation IAT√√√√ 1

N − 1

N−1∑
i=1

(∆ti − ∆̄t)2

3) Coefficient of Variation IAT
σ∆t

∆̄t

4) IAT 25th Percentile

P25(∆t)

5) IAT 75th Percentile

P75(∆t)

6) IAT 90th Percentile

P90(∆t)

7) IAT 90th to 10th Ratio
P90(∆t)

P10(∆t)

8) Large IAT Ratio∣∣{∆ti : ∆ti > ∆̄t}
∣∣

N − 1

9) IAT Entropy
−
∑
i

pi log pi

TIME SERIES FEATURES

1) Mean Size-Time Product

1

N − 1

N−1∑
i=1

Bi ∆ti

2) CV Size-Time Product
σB∆t

B∆t

3) Timing Regularity
1

1 + σ∆2t

4) Relative Time Pattern Entropy

−
∑
i

pi log pi

CHANGE AND ACCELERATION FEATURES

1) Mean Time Change

1

N − 2

N−2∑
i=1

(∆ti+1 −∆ti)

2) Standard Deviation Time Change√√√√ 1

N − 2

N−2∑
i=1

(∆2ti −∆2t)2

3) Mean Time Acceleration

1

N − 3

N−3∑
i=1

(∆3ti)

4) Standard Deviation Time Acceleration√√√√ 1

N − 3

N−3∑
i=1

(∆3ti −∆3t)2
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CORRELATION AND ENTROPY FEATURES

1) Size-Time Correlation
cov(B,∆t)

σB σ∆t

2) Time Entropy Rate
H(w)

|w|
3) Longest Increasing Size Sequence

LIS(B)

N

4) Longest Increasing Time Sequence
LIS(∆t)

N − 1

5) Size Permutation Entropy

−
∑
π

p(π) log p(π)

6) Time Permutation Entropy

−
∑
π

p(π) log p(π)

STATISTICAL FEATURES

1) Time Autocorrelation∑N−2
i=1 (∆ti − ∆̄t)(∆ti+1 − ∆̄t)∑N−1

i=1 (∆ti − ∆̄t)2

2) IAT Skewness
1

N−1

∑N−1
i=1 (∆ti − ∆̄t)3(√

1
N−1

∑N−1
i=1 (∆ti − ∆̄t)2

)3

3) IAT Kurtosis
1

N−1

∑N−1
i=1 (∆ti − ∆̄t)4(

1
N−1

∑N−1
i=1 (∆ti − ∆̄t)2

)2

RATE VARIABILITY FEATURES

1) Rate Variability
σR

R̄

2) Peak Data Rate
max

i

8Bi

∆ti

3) Burst Rate

max
t

8
∑t+b

i=t Bi

b

4) Burstiness
σ∆t − ∆̄t

σ∆t + ∆̄t
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