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Abstract—The deployment of Internet of Things (IoT) devices
requires efficient security mechanisms. However, cryptographic
solutions often prove resource-intensive. Radio Frequency Fin-
gerprinting (RFF) enables device authentication through the
intrinsic characteristics of RF signals at the Physical (PHY)-layer.
Deploying RFF presents two challenges: ensuring operational
efficiency and scalability in resource-constrained environments.
This paper presents a lightweight Edge AI-based RFF model
for device authentication using PHY-layer characteristics. Our
approach implements a Deep Learning (DL) model to extract
device-specific features from IQ samples, converted using Ten-
sorFlow Lite for edge deployment. Evaluation on Raspberry Pi
demonstrates high accuracy (> 0.95) and Receiver Operating
Characteristic-Area Under the Curve (ROC-AUC) scores (>
0.90), while maintaining a compact model size suitable for
resource-constrained environments.

Index Terms—Artificial Intelligence, Authentication, Convolu-
tional Neural Networks, Edge AI, Internet of Things, Physical
Layer Security, Radio Frequency Fingerprinting, Smart Cities,
TensorFlow, TinyML, Wireless Security

I. INTRODUCTION

The growth of the Internet of Things (IoT) [1], [2], sup-

ported by the evolution of networks from 4G to 5G and

beyond, has fundamentally transformed sectors through perva-

sive connectivity among heterogeneous devices. IoT devices,

deployed at the network Edge for smart home, healthcare,

industrial automation, and smart city applications [3], face

significant security challenges due to their inherent resource

constraints and massive scale deployment. Device-generated

data legitimacy, authenticity, and integrity remain critical in

this landscape, with the vast number of interconnected devices

being an extending attack surface, with data breaches, tamper-

ing, and unauthorized access. While cryptographic protocols

provide authentication and integrity, they can be hard to

implement in small-footprint, resource-constrained devices,

particularly for IoT devices such as backscatter tags [4].

Radio Frequency (RF) Fingerprinting (RFF) emerges as a

promising alternative, leveraging edge device capabilities to

implement security mechanisms. RFF utilizes the Physical

(PHY)-layer signal characteristics for wireless device authen-

tication [5], exploiting unique transmitter imperfections as

device fingerprints. These fingerprints, captured through In-

phase (I) and Quadrature (Q) components (together termed

IQ samples), enable reliable authentication without the cryp-

tographic overhead [6], even for devices operating on identical

protocols and frequency bands. Artificial Intelligence (AI)-

based RFF enhances traditional approaches by leveraging

Machine Learning (ML), specifically Deep Learning (DL), to

improve feature extraction and identification accuracy [7].

Although RFF emerges as an alternative to cryptographic

protocols, the fundamental challenge remains to efficiently

deploy RFF within resource-constrained environments. While

edge devices surpass basic IoT endpoints in capability, they

lack the computational resources of cloud infrastructure. De-

spite their capabilities, devices such as Raspberry Pi or

NVIDIA Jetson face constraints in processing power, mem-

ory, and energy consumption, challenging the deployment of

resource-intensive AI-based RFF systems.

Recent contributions ([8], [9]) explored RFF-based authen-

tication at the edge, with [8] employing transfer learning

through ResNet50. However, these are not lightweight archi-

tectures specifically designed for RFF applications. To address

this limitation:

1) We present optimized AI-based RFF implementations tai-

lored for edge deployment, focusing on efficient training

and robust authentication without performance degrada-

tion.

2) We introduce a lightweight DL architecture specifically

designed for PHY-layer authentication on edge devices.

Unlike [8], [9], our model achieves high accuracy without

the need to use transfer learning or pre-trained models.

3) We utilize TensorFlow Lite optimization to demonstrate

deployment feasibility on resource-constrained edge de-

vices while maintaining performance.

4) We evaluate our implementation across 28 transmitters

using an open source dataset [10], demonstrating high ac-

curacy and Receiver Operating Characteristic-Area Under

the Curve (ROC-AUC).

Paper Organization. Section II provides an overview of the

preliminaries and related work. Section III details the con-

sidered system model and states the assumptions. Section IV

discusses the implementation of the proposed lightweight

framework. Section V presents a comprehensive performance

evaluation. Finally, Section VI concludes the paper with a sum-

mary of our findings and potential future research directions.

II. PRELIMINARIES AND RELATED WORK

This section discusses the concepts essential for understand-

ing the rest of the paper, specifically Deep Learning, TinyML,



and RF Fingerprinting.

A. Deep Learning and TinyML

Deep Learning (DL) is a subset of Machine Learning (ML)

utilizing multi-layered Neural Networks (NNs) for complex

task processing, including Natural Language Processing (NLP)

and signal analysis. Convolutional Neural Networks (CNNs),

a specialized NN architecture, excels in image processing

through convolutional layers where parametrized filters extract

hierarchical features [11]. This architecture enables progres-

sive pattern learning, from basic features to complex repre-

sentations, making CNNs particularly effective for recognition

and detection tasks.

TinyML enables the deployment of DL models on resource-

constrained edge devices, shifting from traditional server-

based processing to localized computation. This paradigm

proves essential for smart applications, including healthcare,

urban systems, and mobility solutions. Edge-AI implemen-

tation facilitates real-time inference without server depen-

dency [12]. Model optimization techniques, including quan-

tization and pruning [13], ensure efficient deployment while

maintaining performance.

B. Radio Frequency Fingerprinting

RF Fingerprinting (RFF) leverages inherent hardware imper-

fections in RF devices for identification. Device-specific signal

characteristics [14] enable device authentication through three

key phases [7]: signal acquisition and preprocessing, model

training, and deployment. The implementation process begins

with controlled signal acquisition, capturing device-specific IQ

samples. Preprocessing encompasses feature selection, data

augmentation, and noise reduction. The DL model training

phase focuses on extracting distinctive RF fingerprints from

preprocessed samples. Recent research [14], [15] advanced

feature extraction methodologies for effective DL-based RFF

implementation.

C. Related Work

Edge security can be enhanced by Artificial Intelligence

(AI) that enables real-time attack detection, anomaly de-

tection, and automated recovery mechanisms [16]. AI-based

security solutions facilitate rapid analysis of IoT-generated

data to identify attack patterns [17]. Tiny Machine Learning

(TinyML) [18] advances this capability by enabling AI models

deployment on resource-constrained devices, effectively bring-

ing intelligence closer to data sources while enhancing overall

IoT network security. In the RFF domain, several approaches

demonstrated promising results. Sun et al. [19] developed a

transformer-based multi-feature extraction network for Blue-

tooth device identification, achieving 0.93 accuracy through

their multi-scale feature analysis approach. [20] proposed a

lightweight CNN for mobile RFF, reaching 0.85 accuracy

across 16 USRP devices using IQ signal inputs and time-

domain feature extraction. [21] combined coherent integra-

tion, multiresolution analysis, and Gaussian Support Vector

Machine (SVM) to optimize RF fingerprint classification,

focusing on Signal-to-Noise Ratio (SNR) improvement and

dimensionality reduction.
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Fig. 1: RFF-based device identification system model, il-

lustrating the interaction between multiple IoT transmitters

(Tx1,...,Txn) and an edge-deployed access point (AP), the

receiver (Rx). Rx processes unique RF signal characteristics to

authenticate’, i.e., identify transmissions by legitimate devices

(✓) while rejecting unauthorized transmission attempts (✗).

Edge deployment strategies have received particular at-

tention in recent research. [8] introduced structured pruning

techniques to compress CNN layers, enabling implementation

on resource-constrained devices while maintaining authenti-

cation accuracy. [9] explored federated learning approaches

for RFF authentication, addressing resource allocation chal-

lenges across local and edge computation scenarios, focused

on optimizing network delay in various computational con-

figurations. [22] presented a transformer-based DL model

for LoRA device signal classification, specifically addressing

variable-length signal challenges and low SNR conditions,

incorporating data augmentation and multi-packet inference

to enhance model robustness. Building on this work, [23]

developed a scalable deep metric learning approach for LoRa

authentication, utilizing channel-independent spectrograms for

RF fingerprint extraction and implemented k-Nearest Neighbor

(k-NN) algorithms for device classification.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a system model, depicted in Fig. 1, where

multiple IoT transmitters (Tx1,Tx2, . . . ,Txn) interact with an

edge-deployed Access Point (AP) equipped with receiver Rx.

The AP implements RF fingerprinting through a pre-trained

DL model, processing IQ samples to authenticate devices

based on their PHY-layer characteristics. The model evaluates

incoming signals against known authorized device fingerprints,

rejecting unauthorized access attempts when RF signatures

do not match those the model was trained on. This authen-

tication framework faces two fundamental challenges. First,

the open-set classification problem ([24], [25]): traditional

RFF approaches struggle with unknown device generaliza-

tion. The system requires comprehensive training data from
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Fig. 2: Structure and details of the implemented CNN.

authorized devices, with regular model updates to maintain

authentication robustness. While advanced techniques, such

as contrastive learning, offer potential solutions for unknown

device handling [25], our work focuses on closed-set scenar-

ios: device classes are known during training. Second, edge

deployment presents specific constraints: (a) Model size limi-

tations affecting inference time performance, and (b) Accuracy

degradation during model optimization, particularly through

quantization of weights and activations. These constraints are

addressed in Section IV and Section V, respectively, focusing

on practical implementation strategies for resource-constrained

environments.

IV. LIGHTWEIGHT EDGE AI-BASED RFF

This section discusses the Deep Learning architecture im-

plementation and the TinyML conversion process.

A. Deep Learning

Fig. 2 illustrates the structure and details of the implemented

CNN. The implementation is done using the TensorFlow and

Keras libraries. The input layer reshapes the data to (256, 2,

1) to accommodate the 2D convolution operations. The model

includes a structured series of convolutional and max-pooling

layers arranged in a pattern of decreasing spatial dimensions

and increasing feature depth. The first convolutional block

employs 8 filters with a kernel size of (3, 2), followed by

a max-pooling layer with a pool size of (2, 1). This is

followed by the second convolutional block with 16 filters

of the same kernel size and pooling configuration. The third

block features 32 filters with a kernel size of (3, 1) and

identical pooling. The fourth block reduces the filter count

to 16, maintaining the kernel size (3, 1) without subsequent

pooling to retain sufficient resolution for dense layers. Post

convolution, a flattening layer converts the 3D tensor output

to a 1D vector. This vector is processed through two dense

layers: (i) with 100 units and (ii) with 80 units, both employing

Rectified Linear Unit (ReLU) activation and L2 regularization

with a factor of 0.0001 to mitigate overfitting. A dropout

layer with a rate of 0.5 is also incorporated to further prevent

overfitting. The output layer consists of a dense layer with

units equal to the number of device classes, utilizing the

softmax activation function and L2 regularization. Finally, the

model is compiled using the Adam optimizer, with sparse

categorical cross-entropy as the loss function.

This lightweight CNN architecture effectively captures spa-

tial and temporal features from the input signals through the

convolutional and pooling layers, while the dense layers and

the dropout layers ensure robust feature learning and general-

ization. Table I lists all the parameters and specifications for

the developed CNN model. Several optimization techniques,

including quantization, pruning, and clustering, can be applied

to minimize model size and latency while maintaining preci-

sion. We adopted the same steps as in [26] to convert the

regular CNN model to a deployable and lightweight model on

edge devices using TensorFlow Lite (TFLite).

TABLE I: CNN model parameters summary.

Parameter Specs

Input Shape (256, 2, 1)

Convolution Layers 4 layers (8, 16, 32, 16 filters respectively)

Kernel Size (3, 2) and (3, 1)

Pooling Layers 3 Max Pooling (pool size: (2, 1))

Dense Layers 3 layers (100, 80 units, 1 output layer)

Dropout Rate 0.5

Output Activation Softmax

Loss Function Sparse Categorical Crossentropy

Optimizer Adam

Activation Function ReLU

Table II shows the sizes of all the models developed in

this work: trained, TFLite, and Quantized. The CNN model

size is 1437.17 KB, with the TFLite model reduced to 462.02

KB and the Quantized TFLite model even further reduced

to 123.80 KB. The TFLite model is 3.11 times smaller, and

the TFLite Quantized model is 11.61 times smaller than the

original model.

TABLE II: Model size for CNN architecture.

Type CNN [KB]

Trained Model (Not converted) 1437.17

TFLite 462.02

TFLite Quantized 123.8

V. PERFORMANCE EVALUATION

Training. We utilize the SingleDay dataset provided by

WiSig [10] to train the presented DL architecture. The dataset

consists of 800 Wi-Fi signals generated by 28 transmitters

collected over a one-day period and contains the IQ samples of

the signals emitted by each device. For a detailed description

of the full dataset and how the data is collected, please refer

to [10]. The training was performed on a workstation with
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a function of the number of training epochs.
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Fig. 4: Model training/validation accuracy and loss, as a

function of the number of epochs.

the following configuration: 12th Gen Intel(R) Core(TM) i9-

12900K with a clock speed of 3.20 GHz, memory size of

64.0 GB, and an NVIDIA RTX A4000 GPU with a memory

size of 32 GB. The model training parameters are summarized

in Table III. We considered the default learning rate, as it

provides an acceptable performance and accuracy convergence

for the DL model. The number of epochs is 100, providing a

reasonable balance between underfitting (insufficient learning)

and overfitting (model learning noise instead of patterns). The

training data is shuffled before each training epoch, preventing

the model from learning patterns based on the order of training

samples.

TABLE III: Training parameters.

Parameter Value

Learning Rate 0.001 (Default)

Epochs 100

Batch Size 32

Shuffle Every Epoch

Validation Data Random 20% of the data
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Fig. 5: Trained model confusion matrix.

Data Preprocessing: We preprocess the RF signals to ensure

uniform scaling across all samples, thereby mitigating poten-

tial biases towards higher magnitude signals. This enhances the

convergence and results in faster and stabler model learning.

Furthermore, it prevents overflow and underflow issues arising

from large variations in signal magnitudes.

Data Validation: The dataset is divided into training and

validation sets with a ratio of 80/20. The chosen split ratio is

common for the training and validation of DL models. The

validation set is used to assess the model performance after

each epoch during the tuning of the hyperparameters.

Batch Size: An important training hyperparameter is the

batch size, that is, the number of samples utilized in training

the network in every epoch. A batch size of 32 is used for

training, providing a good trade-off between stability and

training time. As illustrated in Fig. 3, we compare batch

size efficiency (lower fluctuation in validation accuracy) and

training time (faster than smaller batches but not too large to

cause accuracy drops).

TABLE IV: Predication accuracy of the non-converted (origi-

nal) CNN, converted TFLite, and Quantized TFLite models.

Model Type Accuracy

Trained Model 0.99

TFLite 0.99

Quantized TFLite 0.99

In Fig. 4, the CNN model training and validation accuracy

start to converge, with an accuracy > 0.90, from the third

epoch on. In the last epoch, the training accuracy is 0.99, while

the validation accuracy is approximately 0.99. This shows that

the model is able to learn by capturing the unique features of

each transmitter in just a few training epochs. Similarly, the

training and validation loss of the model decreases with the

increase in the number of epochs, illustrating that the model

does not overfit.

Evaluation. We evaluated the trained and both converted
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Fig. 6: ROC-AUC curves for the CNN model (a) TFLite and (b) TFLite Quantized, highlighting the model performance.

TFLite and Quantized TFLite models using the raw IQ data.

Table IV compares the accuracy for the trained and converted

models. Fig. 5 illustrates the confusion matrix when perform-

ing the prediction for the trained CNN model. Furthermore,

Fig. 6 shows the ROC-AUC for TFLite (Fig. 6a) and Quan-

tized TFLite (Fig. 6b) models. For all 28 transmitters, both

models retain very high AUC values (> 0.90), indicating that

both models are able to effectively distinguish between true

positives and false positives across all the classes.

Inference on the Edge. To evaluate the performance of

the Keras converted and optimized models, we run 1000

inferences on a Raspberry Pi 4 and compute the average

inference time, that is, the time to perform the prediction. The

Raspberry Pi is equipped with 8GB of RAM. Table V depicts

the average inference times of the Keras-converted CNN

models, i.e., TFLite and Quantized TFLite. The Quantized

model significantly reduces the inference time. This is due

to quantization, which reduces the numerical precision of

the model weights and activations from 32-bit floats to 8-bit

integers. This reduces the model size, making it more memory-

efficient, and speeds up processing, particularly on hardware

optimized for integer arithmetic. Hence, Quantized TFLite

models provide faster and more efficient inference without

substantially compromising accuracy.

TABLE V: Mean inference time for the CNN model using

TFLite and Quantized TFLite on Raspberry Pi 4.

Model Type Time [ms] 95% CI [ms]

CNN – TFLite 10.9049 0.0072

CNN – Quantized TFLite 0.3983 0.0010

VI. CONCLUSION

In this paper, we presented the methodology for deploying

RFF on edge devices to enhance the security of IoT wireless

networks. By leveraging the unique device characteristics

extracted from the raw IQ data, our lightweight CNN imple-

mentation, with TensorFlow Lite optimization applied, demon-

strates robust device identification (authentication) capabilities

within resource-constrained environments. Experimental eval-

uation reveals significant achievements in both performance

and practicality. The implementation consistently achieves

accuracy exceeding 0.95 and ROC-AUC scores greater than

0.90 in device identification tasks. Through strategic model

quantization, we successfully address the computational con-

straints of edge deployment while maintaining authentication

reliability.

Real-world validation on Raspberry Pi hardware confirms

the framework viability for practical applications. The devel-

oped methodology proves particularly relevant for emerging,

5G and Beyond, applications, offering robust authentication

solutions for Internet of Drones (IoD), Internet of Vehicles

(IoV), and Internet of Medical Things (IoMT) deployments.

Our implementation framework establishes a foundation for

efficient edge-based authentication in resource-constrained en-

vironments. Future work will focus on exploring different DL

architectures, expanding dataset diversity across IoT devices

and environmental conditions, optimizing model architectures

and hyperparameters, and implementing advanced efficiency

enhancement techniques.
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