
A Model-based Approach for Assessing the Security of
Cyber-Physical Systems

Hugo TEIXEIRA DE CASTRO
SAMOVAR, Telecom SudParis,
Institut Polytechnique de Paris

Palaiseau, France
hugo.teixeiradecastro@hotmail.com

Ahmed Hussain
KTH Royal Institute of Technology
Networked Systems Security Group

Stockholm, Sweden
ahmhus@kth.se

Jamal EL HACHEM
Université Bretagne Sud, UMR CNRS

6074, IRISA
Vannes, France

jamal.el-hachem@irisa.fr

Gregory Blanc
SAMOVAR, Telecom SudParis,
Institut Polytechnique de Paris

Palaiseau, France
gregory.blanc@telecom-sudparis.eu

Dominique Blouin
LTCI, Telecom Paris,

Institut Polytechnique de Paris
Palaiseau, France

dominique.blouin@telecom-paris.fr

Jean Leneutre
LTCI, Telecom Paris,

Institut Polytechnique de Paris
Palaiseau, France

jean.leneutre@telecom-paris.fr

Panos Papadimitratos
KTH Royal Institute of Technology
Networked Systems Security Group

Stockholm, Sweden
papadim@kth.se

ABSTRACT
Cyber-Physical Systems (CPSs) complexity has been continuously
increasing to support new life-impacting applications, such as
Internet of Things (IoT) devices or Industrial Control Systems (ICSs).
These characteristics introduce new critical security challenges to
both industrial practitioners and academics. This work investigates
how Model-Based System Engineering (MBSE) and attack graph
approaches could be leveraged to model secure Cyber-Physical Sys-
tem solutions and identify high-impact attacks early in the system
development life cycle. To achieve this, we propose a new frame-
work that comprises (1) an easily adoptable modeling paradigm for
Cyber-Physical System representation, (2) an attack-graph-based
solution for Cyber-Physical System automatic quantitative security
analysis, based on the MulVAL security tool, (3) a set of Model-To-
Text (MTT) transformation rules to bridge the gap between SysML
and MulVAL. We illustrated the validity of our proposed framework
through an autonomous ventilation system example. A Denial of
Service (DoS) attack targeting an industrial communication proto-
col was identified and displayed as attack graphs. In future work,
we intend to connect the approach to dynamic security databases
for automatic countermeasure selection.

∗This is a personal copy of the authors. Not for redistribution. The final version of
the paper is available in the Proceedings of the 19th International Conference on
Availability, Reliability and Security (ARES’24)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670470

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks; Redundancy; Embedded and
cyber-physical systems; Embedded systems; Robotics; •Networks
→ Network properties; Network reliability.

KEYWORDS
Risk Analysis, Security and Privacy for Cyber-Physical Systems,
Critical Infrastructures, Threats and Attack Modelling, Usable Se-
curity and Privacy, Security by Design.
ACM Reference Format:
Hugo TEIXEIRA DE CASTRO, Ahmed Hussain, Jamal EL HACHEM, Gre-
gory Blanc, Dominique Blouin, Jean Leneutre, and Panos Papadimitratos.
2024. A Model-based Approach for Assessing the Security of Cyber-Physical
Systems. In The 19th International Conference on Availability, Reliability and
Security (ARES 2024), July 30-August 2, 2024, Vienna, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3664476.3670470

1 INTRODUCTION
A Cyber-Physical System (CPS) is a system in which physical and
cyber components collaborate to achieve a given goal or function;
they are the integration of computationwith physical processes [27].
Typical CPSs components include sensors (to retrieve physical val-
ues from the environment), computing units (to make decisions
based on the sensed values), and actuators (to impact the environ-
ment in a desired way). Nowadays, CPSs are used in a large number
of applications, often with a significant societal impact, such as
energy-aware buildings [24], robotic systems [53], or autonomous
vehicles traffic flow management [12].

CPSs are also particularly vulnerable and face increased cyber
risk [58]. Indeed, interconnecting the cyber and physical worlds
increases the attack surface and gives rise to new impactful se-
curity threats. They are also susceptible to physical attacks, with

https://orcid.org/0009-0009-3692-599X
https://orcid.org/0000-0003-4732-9543
https://orcid.org/0009-0000-5775-3271
https://orcid.org/0000-0001-8150-6617
https://orcid.org/0000-0001-7606-0251
https://orcid.org/0000-0003-1943-1583
https://orcid.org/0000-0002-3267-5374
https://doi.org/10.1145/3664476.3670470
https://doi.org/10.1145/3664476.3670470

ARES 2024, July 30-August 2, 2024, Vienna, Austria

sensors and actuators geographically distributed, possibly unat-
tended, which can be physically tampered with. Furthermore, CPSs
have very specific requirements, such as safety, availability, or
time-criticality, which makes traditional countermeasures (e.g., fire-
walls, anti-viruses, public key cryptography) less effective [49]. In
recent years, we witnessed an increase in cyber attacks on CPSs,
some of which had a tremendous social and economic impact. The
Stuxnet [23] attack damaged about 2000 centrifuges in Iranian nu-
clear facilities and delayed the entire nuclear program by two years.
In 2021, the Verkada hack exposed over 150,000 security cameras
in many locations such as factories, jails, or hospitals [21]. Such
examples motivate the need for a methodology that enables specify-
ing the expected security requirements and deploying enforcement
points.

To prevent such events, a proper Risk Analysis (RA) of the entire
system is necessary. Ideally, this RA should be performed from
an infrastructure perspective [14], as various works showed that
component-wise solutions do not suffice [10, 43]. However, this
makes the entire process complex, especially for those with lim-
ited cybersecurity knowledge. A promising solution would be to
take inspiration from model-based approaches. Indeed, models are
simplified representations that can cover multiple scales [47], from
high-level perspectives to a component’s inner parts and behavior.
Furthermore, the relations between the different system compo-
nents are formalized, and model-checking can be used to verify the
overall consistency [6]. These features and layer of abstraction are
extremely useful to manage the complexity.

Besides, security experts can use models to design and integrate
countermeasures into the rest of the system. Automating the se-
curity analysis at this stage is provably more advantageous, as
manual assessments are time-consuming, error-prone, and even
infeasible in some contexts [51]. Models can also be used at later
stages to test countermeasures and run simulations. Ultimately,
it could provide a wide overview of the system’s security risks,
even in complex and intricate CPSs. However, though model-based
practices are widely common in systems engineering and software
development to model functional and non-functional requirements,
their application to security is rare [17, 36]

Research Question. This paper addresses the following research
question: What specific workflows, combining appropriate and acces-
sible modeling approaches, can be used to represent complex CPSs at
different levels of abstraction and assess their level of security?

Contributions. The framework presented in this paper aims to fill
this gap. Specifically, we provide the following:

• A model-based framework that represents CPS-specific com-
ponents and vulnerabilities by extending and combining the
SysML and MulVAL tools.

• An accessible and intuitive approach that does not require
deep security expertise from the system architects.

• MTT transformations and name-matching algorithm to au-
tomate the attack graph generation process from a system
model.

• Validation of the effectiveness of our framework by apply-
ing it to a simplified small-scale view of a real-world smart
building.

Paper Organization. The remainder of this paper is organized
as follows: Section 2 provides the preliminary and background
knowledge on the topics associated with RA and MBSE. Section 3
illustrates the solution’s properties and design, while Section 4 elab-
orates on the technical implementation details. Section 5 presents
the case study used to evaluate the proposed approach. Finally,
Section 6 lists all the relevant related work and Section 7 wraps up
the findings in this paper and addresses potential future work.

2 BACKGROUND
This section introduces the core concepts of the proposed imple-
mentation. We present key elements of RA and discuss the two
main paradigms we used in our implementation, namely, MBSE
and attack graphs.

2.1 Model-Based System Engineering
Definition and Advantages. Model-Based System Engineering

(MBSE) is a standard approach in systems engineering in which the
entire development process is centered aroundmodels of the system
to be built [41]. MBSE is widely adopted in system engineering be-
cause of its many advantages [47]. Indeed, models are less complex
than real systems, making them more accessible. Furthermore, the
models can easily be changed to experiment with various design
solutions. Finally, models often have a formal, machine-readable
syntax that enables automatic model analysis and verification. The
use of MBSE approaches in cybersecurity could have several ben-
efits, such as reduced complexity in the representation of large
physical systems or the automatic inference of security risks and
vulnerabilities.

Models including details about the CPS components and the
functional architecture can thus be automatically analyzed to infer
security risks or vulnerabilities.

SysML. The Systems Modeling Language (SysML) [63] was de-
signed as an extension of UnifiedModeling Language (UML) through
profiles to better support systems engineering. SysML reuses UML’s
set of diagrams, in addition to integrating its own extensions. For
instance, UML class diagrams, renamed Block Definition Diagrams
(BDDs) in SysML, can be used to represent different system compo-
nents using the concept of block. This is considered a more generic
object type than a UML class, enabling the representation of ab-
stract, high-level components or sub-parts of the system. Moreover,
SysML introduces Internal Block Diagrams (IBDs), static, structural
diagrams, owned by a particular block, that illustrate its encapsu-
lated structural contents, such as its parts, properties, connectors,
ports, and interfaces.

We used a SysML-based approach for various reasons. Its main
advantage is its versatility, which it inherited fromUML. It is generic
and easily extensible and can be used to model any type of system,
including hardware, software, information, processes, personnel,
and facilities. Furthermore, SysML inherits UML’s profiling features,
enabling the creation of any Domain Specific Language (DSL). Sub-
sequently, numerous SysML extensions have been developed [55],
including some to model smart buildings and cities [1]. These exten-
sion mechanisms rely on the definition of profiles, which consists
of stereotypes, allowing designers to extend the vocabulary of UML
to create new model elements.

A Model-based Approach for Assessing the Security of Cyber-Physical Systems ARES 2024, July 30-August 2, 2024, Vienna, Austria

2.2 Attack Graphs
Formalism Description. Attack graphs [40] are a formalism to

represent attack scenarios. They offer a visual representation that
illustrates the potential paths an attacker could take to exploit vul-
nerabilities and compromise a system or network. Nodes in the
graph represent various elements, and edges represent the possible
connections or exploits that an attacker could use to move from one
node to another. Attack graphs are often used in Risk Analysis (RA)
to formalize threat scenarios and visualize the system’s most vulner-
able elements. Ultimately, it enables the selection and prioritization
of countermeasures. Attack graphs offer a visually intuitive rep-
resentation of complex attack scenarios, making them easier to
understand even for non-experts. Furthermore, graph structures
can lead to more advanced automation and computations, for in-
stance, in this case, of an attack’s likelihood or impact.

MulVAL. Multi-host, multi-stage Vulnerability Analysis Lan-
guage (MulVAL) [38] is an attack graph generation tool written in
Datalog [8]. Over the years, many contributors have added their
own rules and predicates to model various attack scenarios [52].
The predicates represent the machines in the system, their ports,
connections, and programs they run, as well as the firewall rules
and existing vulnerabilities. Based on these input parameters, Mul-
VAL applies a set of Datalog rules (of the form P :- P1, P2, i.e.,
predicate P is true if P1 and P2 are true) to generate the attack
graph. Additionally, optional commands allow one to define users
and their permissions.

Though MulVAL is neither CPS-specific nor model-based, it is
open-source and easily customizable. Custom rules and predicates
can be introduced to represent any attack scenario and fill any gap.
Additionally, MulVAL is performant and can generate attack graphs
in polynomial time [38], which is particularly important for large
and complex CPSs.

3 METHODOLOGY
The goal is to develop a model-based approach to identify and
quantify attack scenarios in CPS. Indeed, the elicitation of scenar-
ios leading to a risk realization is a crucial step of the risk analysis
process. As such, this step should be accessible to people with lim-
ited knowledge on security. Furthermore, it should be automated
or semi-automated to save time and reduce errors. This section
provides a high-level overview of the developed methodology and
explains the main steps leading to the generation of an attack graph
from a model of the system. A SysML-based language is used to
create the model, which is then parsed to generate the MulVAL
input code. Finally, the MulVAL engine generates possible attack
scenarios as attack graphs. These attack scenarios can then serve
as inputs to the rest of the RA process. SysML and MulVAL were se-
lected based on a global evaluation of multiple systemmodeling and
security analysis tools. Criteria observed included, among others,
CPS-specificity, accessibility to non-security experts, and compati-
bility between the different formalisms to produce a straightforward
mapping.

Figure 1 depicts the steps to generate an attack graph based on
a CPS model. The following Subsections 3.1, 3.2, and 3.3 describe
the steps required for an attack graph to be generated.

Hosts, Programs,
Connections,

Ports, ...
Transformation

Rules

Model to
Text

MulVAL
Input

Attack
Graph

SysML
Model

Predicates and Rules
for CPS Attacks

Figure 1: Process for generating an attack graph from a
SysML-based model.

3.1 Systems Modeling
The first step is to model the CPS using an extension of SysML. The
extension focuses on security-related aspects. Specifically, annota-
tions in the form of UML stereotypes including hosts, programs,
and physical devices, are defined. The connections between these
components, communication protocols, and ports are also needed
to model the system. Finally, stakeholders (e.g., users, employees,
etc.) interacting with the system or its parts are modeled, given
that they represent potential attack vectors. This information will
later be used as input to automatically identify vulnerabilities and
attack scenarios.

The SysML extension presented in this paper was created to
symbolize all the aforementioned concepts. Indeed, SysML’s base
metamodel did not meet all the requirements. Basic blocks are too
abstract and cannot be used to distinguish different types of com-
ponents. Besides, SysML only focuses on functional requirements,
and no security-related stereotypes are available, which is why we
defined the aforementioned extension. Once the model is complete,
all the information necessary to perform the security analysis is
available.

3.2 Model-to-Text Transformations
Model-To-Text (MTT) transformation refers to the process of gen-
erating textual output (e.g., source code or documentation) from a
given model or representation [39]. This often involves converting
information or data from a structured or machine-readable format
into human-readable text. This transformation enables the model
parser to identify each of the model’s elements and produce the
corresponding code. This approach has several advantages. MTT
transformations increase productivity, and help the transformation
developer use concepts closer to the problem domain at hand, rather
than those offered by programming languages [42].

The previously introduced SysML model (Sec. 3.1) is not yet
exploitable by our attack graph generation tool. Hence, appropriate
transformations are needed to convert the SysML model into a
MulVAL-readable file. To achieve this, we formally map each Dat-
alog predicate (MulVAL input information) to its corresponding
representation in SysML. The mapping is summarized in Table 1.
This method enables the (semi)-automatic transformation of CPS ar-
chitecture elements into executable artifacts (MulVAL code). Based
on the later results from the security analysis, new elements can
be iteratively integrated in the model until reaching an acceptable
level of security.

ARES 2024, July 30-August 2, 2024, Vienna, Austria

A benefit of adding SysML as an additional MulVAL input would
be accessibility. Indeed, MulVAL’s raw syntax (Datalog) is technical
and complex and requires specific expertise to use (especially since
MulVAL is not as popular as other programming languages). On the
other hand, SysML is diagram-oriented, which makes it easier to
represent and visualize the system. It can be easily used by system
architects without having to match MulVAL’s syntax directly.

Besides, we developed an identification algorithm to extract
the type of the CPS components. For example, it is possible to
automatically know if a model element is a database, a server, or
a sensor. This is shown to be useful during the security analysis,
as some attack patterns and vulnerabilities are specific to certain
software and hardware. More details are available in Section 4.3.

Table 1: Mappings between new SysML’s stereotypes and
MulVAL’s predicates.

Stereotype MulVAL predicate

Attacker attackerLocated(Host)
Program networkServiceInfo(Host, Prog, Protocol, Port, Usr).

Connection hacl(Src, Dst, Protocol, Port).
Device isSensor(Device) or isActuator(Sensor).
User stakeHolder(Username,Exposure)

hasAccount hasAccount(User,Host,Permission)
physicalAccess physicalAccess(User,Device,Permission).

Asset isAsset(Asset, Importance).

3.3 Automatic Graph Generation
The MulVAL input discussed in Sec. 3.2 is used by MulVAL’s en-
gine to automatically generate attack graphs, representing attack
events in the system. The nodes in the graph represent the system
components as well as their vulnerabilities, which an adversary can
exploit. The leaves correspond to the entry points; the root is the
attacker’s final goal, e.g., to compromise a specific machine.

As already discussed, CPSs are more vulnerable than traditional
Information Technology (IT) systems. As such, a key goal was to
generate CPS-specific scenarios as attack graphs. This would help
system architects identify threats early, consider them in the RA,
and implement suitable countermeasures.

To that end, we augmented MulVAL’s basic ruleset with addi-
tional attacks, such as physical tampering and Common Vulnerabil-
ity Enumeration (CVE) entries. Additionally, using MulVAL enables
performing quantitative analysis and computing the probability of
success of an attack. Indeed, each transition in the graph is attrib-
uted to an elementary likelihood. Moreover, they are aggregated
at every step to get the probability of reaching a specific node and,
ultimately, the attack goal. These elementary likelihoods can either
be manually entered or extracted from the Common Vulnerability
Scoring System (CVSS) scores of the vulnerabilities [16, 31]. These
probabilities calculations are paramount for risk prioritization and
countermeasure selection.

4 IMPLEMENTATION
This section provides technical details about the presented exten-
sions. The goal is to be able to automatically infer attack scenarios

from the information contained in the system’s model. In what
follows, the new SysML stereotypes, additional MulVAL rules and
predicates, and Model-To-Text (MTT) templates are described.

4.1 New stereotypes for the SysML Extension
As discussed earlier, SysML was initially designed for system engi-
neering. Hence, it does not represent complex security properties,
which must be manually added. A few existing SysML extensions
were proposed to address this [3, 15, 50]. However, the introduced
concepts are not sufficient to analyze the CPS models and generate
corresponding attack graphs. Therefore, we devised specific custom
stereotypes, enhancing the representation of these properties. The
modified metamodel, including the newly integrated stereotypes,
is illustrated in Figure 2.

Initially, we differentiate the CPS components, i.e., machines,
physical devices, and software elements, since each of them plays a
specific role in an attack scenario. Thus, we derived distinct stereo-
types from SysML blocks: Hosts, Programs, and Devices. Custom
attributes, such as the software’s version number, can also be added
to make the model more precise. These stereotypes are all exten-
sions of Asset. These assets are represented as system components
that hold a particular value or importance. Each have 2 attributes:
(i) their level of importance, on a scale from 1 to 5, and (ii) the secu-
rity property that must be guaranteed among the Confidentiality
Integrity Availability (CIA) triad. The former gives insight into an
asset’s criticality, i.e., the level of impact if compromised. MulVAL
uses the latter to generate the needed scenarios (for instance, all
scenarios that lead to a confidentiality violation).

Another stereotype introduced is Connection, which represents
directed network links between the components. It has an optional
attribute to indicate the communication protocol (e.g., TCP/IP, Eth-
ernet), and it can also point to traditional SysML ports to represent
port numbers. If the connection protocol is not specified, it is as-
sumed any protocol can be used. Connections are extensions of item
flows, representing information exchanges between components.

Two stereotypes are used to represent individuals that interact
with the CPS: the Attacker and the User. The latter has several
dependencies with the system’s blocks. Indeed, the stakeholder
can have an account on a machine, which would correspond to
a traditional user account with defined permissions. In the case
of a device, we indicate if a stakeholder can physically access it
and thus possibly tamper with it. With the stakeholder’s attributes,
one can provide more details about the user’s profile. Competent
is a boolean that indicates whether or not a user can be trivially
compromised, for example, by phishing or brute-force attacks. The
Malicious boolean is used to define an insider attacker, and the
Exposure integer indicates the probability of the stakeholder being
targeted. The attackers and stakeholders are derived from actors,
similar to those seen in UML use-case diagrams to represent real
users. The new stereotypes allow for their use cases to be similar
to usual SysML design patterns, ultimately making it easier for sys-
tem architects to adopt this approach. Furthermore, our approach
minimizes the requirement for the inclusion of security-related
information. Modelers are only required to provide basic input of
security properties, such as CIA, and to assess the exposure levels
of assets and stakeholders. Knowledge about vulnerabilities and

A Model-based Approach for Assessing the Security of Cyber-Physical Systems ARES 2024, July 30-August 2, 2024, Vienna, Austria

UML

SysML

Custom Profile

BDD
0..*

Host Program

version: String

Device

type: DeviceType

User

competent: Boolean
malicious: Boolean
exposure: ImportanceLevel

Attacker

[0..*] hasAccount

[0..*] physicalAccess

IBD

Port

ItemFlow

Connection

protocol: String

[0..*] lfrom

[0..*] to

[0..*] to

Actor

0..*

0..*

Asset

securityProperty: Property
 importance: ImportanceLevel

Block

[0..*] to

Figure 2: Extension of SysML’smetamodel. The boxes in red are the new stereotypes, the ones in black are the default stereotypes.

attack patterns is already included in MulVAL, which lightens the
burdens on system architects.

4.2 Extensions for MulVAL
MulVAL was initially designed to generate attack scenarios in
legacy networked information systems. Only traditional elements,
such as computers, firewalls, or routers, are identified by MulVAL.
Thus, it is not suited to generate CPS-specific graphs. Several re-
searchers improved MulVAL by introducing additional attacks and
concepts [35, 46, 48, 52]. However, these extensions are considered
use-case-specific. To the best of our knowledge, none of the ex-
isting contributions considered implementing extensions for CPS
scenarios.

To fill this gap and to support the generation of CPS-specific
scenarios, we implemented new MulVAL rules and predicates in-
corporating several common attacks [2, 9, 26, 29, 44] on CPSs. This
paper focuses on the OPC UA Flooding [9] attack, a DoS attack that
exploits a vulnerability in the OPC UA protocol. As explained by
Cavalieri al. [9], the attacker sends a few initial messages, forcing
the target to reply with multiple responses [9]. It is CPS-specific
since OPC UA is commonly used to facilitate the information ex-
change between industrial processes [33]. To represent this in Mul-
VAL, we implemented rules to check if an OPC UA connection
between 2 hosts can be exploited by an attacker to perform DoS.

4.3 MTT Transformation Rules
Eclipse Acceleo [60] is a template-based code generator, with each
template specifying the text that must be generated for each stereo-
type. We used Acceleo because it is an implementation of the Ob-
ject Modeling Group MTT transformation standard [61], making
it appropriate to parse any metamodel from the Eclipse Modeling
Framework (EMF), including UML or SysML. Furthermore, it is

open-source, easy to use, and well-documented, with frequent up-
dates from the developers. Finally, it offers powerful support by
offering an editor, a debugger, a profiler, and traceability between
model and code [5].

Table 1 defines all the custom mappings between SysML stereo-
types and MulVAL predicates. The model element’s name and cus-
tom attributes can be included in the MulVAL predicates. Acceleo
enables precise and intricate operations, such as identifying the host
on which a program is running. It provides access to the model’s
hierarchy and retrieves all a given node’s predecessors or siblings.
Additionally, it is used to convert the SysML model into a Datalog
input file for MulVAL.

Besides, a name-based identification algorithm (inspired from [34])
for the model’s elements is implemented. Specifically, we used the
Common Platform Enumeration (CPE) [11] name format to for-
mally identify specific programs. When a model’s element name
contains or is contained by the CPE entry, the algorithm creates
an association, and a new MulVAL predicate isA(prog, cpe) is gen-
erated. CPE is connected to the CVE database, which enables the
identification of possible vulnerabilities in a software model. Hosts
have no official naming convention; hence, we only provide a basic
categorization with types such as web server or database. Addition-
ally, the system architect does not need to enter information about
the system’s vulnerabilities. This step is performed automatically
by the identification algorithm. It is implemented as Java func-
tions, which can be called by Acceleo during the code generation.
However, following a proper naming format is required.

5 CASE STUDY: HEATING VENTILATION AIR
CONDITIONING SYSTEM

This section applies and evaluates the developed framework on
a real-world CPS. The objective is to determine if the presented

ARES 2024, July 30-August 2, 2024, Vienna, Austria

Sensor

Actuator

SCADA
(MachineExpert)

Ethernet R
ing

PLC
(ControlExpert)

OPCUA

Webserver Remote Site

Alert
Provider

Adversary

Figure 3: ICS architecture and components.

work can accurately model CPS characteristics and use them to
automatically identify attack scenarios. The Heat Ventilation Air
Conditioning (HVAC) system and its architecture are presented.
Next, we model it using the developed SysML extension before
generating the attack scenarios.

5.1 Heat Ventilation Air Conditioning
Architecture

The case study is an Industrial Control System (ICS), more specif-
ically, an autonomous HVAC system whose goal is to maintain
a stable temperature. For simplicity and demonstration purposes,
only a simplified version, depicted in Figure 3, is considered. The
goal was to use a sufficiently generic model to prove that our ap-
proach could be applied to most systems.

The HVAC is composed of a Supervisory Control and Data Ac-
quisition (SCADA), a control system for high-level supervision of
machines and processes. The SCADA monitors the Programmable
Logic Controller (PLC), which receives the temperature and hu-
midity values from the sensor, performs computations, and sends
commands to an actuator (a fan). The SCADA and PLC communi-
cate using the OPC UA protocol, whereas the physical devices are
connected via Ethernet. A web server is connected to the SCADA
and serves as an entry point into the system. It can be accessed
remotely via VPN, or directly through the employee workstations.
Three pieces of software developed by Schneider Electric are used:
EcoStruxure Machine Expert and Ecostruxure OPC UA Server Ex-
pert for the SCADA, EcoStruxure Control Expert for the PLC 1.

5.2 Scenario and Adversarial Model
The adversary assumed in this work is a cybercriminal who targets
the HVAC infrastructure by performing DoS attacks and data thefts,
seeking financial gains. We assume that the adversary is located out-
side the system and initiates the attack remotely. Furthermore, we
assume the adversary has enough computational power to exhaust
the most vulnerable machines, particularly the CPS components.

The adversary’s main strategy is to target critical stakeholders
(i.e., the actors with privileged access to the system) and use them
as entry points to the system. Particularly, the adversary targets
the security alert provider who is responsible for detecting abnor-
mal events (e.g., sensors malfunction, abnormal temperatures, etc.)
and reporting it to the HVAC’s staff. The alert provider is located
remotely and connects to the system via a secure Virtual Private

1The described software can be found at https://www.se.com/uk/en/product-range/
548-ecostruxure-control-expert-unity-pro and https://www.se.com/uk/en/product-
range/2226-ecostruxure-machine-expert

Network (VPN) connection2. The adversary aims to compromise
the credentials for the aforementioned VPN connection through
brute-force cracking or using sniffer malware. This VPN connec-
tion will enable the adversary to access the internal network and
perform the DoS attack.

5.3 Modeling the Case Study
We evaluate the proposed framework using the aforementioned case
study. A model of the HVAC system must be first developed using
the provided SysML extension. The model elements and diagrams
are created using Eclipse Papyrus [59].

Figure 4 defines a high-level abstract block, named HVAC, as
well as its basic components. Their interactions, represented by
communication arrows and ports, correspond to the architecture
discussed in Section 5.2. The SCADA monitors the PLC, which is
connected to the sensor and actuator. The OPC UA protocol is given
as an attribute of the Connection stereotype, and the OPC UA port
is represented as a traditional SysML port. All model elements are
not shown for readability, but by recursively nesting more blocks,
it is possible to model the interactions with other sub-systems. For
instance, the webserver is defined as an external interface.

Figure 4: HVAC Internal Block Diagram.

5.4 Generated Attack Graphs
By applying Model-To-Text (MTT) transformations to the model,
a MulVAL input is generated, enabling the automatic generation
of attack graphs for the analyzed system. Various attack goals
can be specified to create distinct scenarios. Figure 5 presents an
attack graph in which the SCADA host is targeted. A rectangle
node corresponds to a MulVAL predicate, while the diamond-shaped
nodes represent the rules applied for each transition. The number
on the node’s left side is an arbitrary step number, and the one on the

2The alert provider sends a connection request to the web server through a VPN tunnel,
allowing it to access the ICS, including the SCADA system.

https://www.se.com/uk/en/product-range/548-ecostruxure-control-expert-unity-pro
https://www.se.com/uk/en/product-range/548-ecostruxure-control-expert-unity-pro
https://www.se.com/uk/en/product-range/2226-ecostruxure-machine-expert
https://www.se.com/uk/en/product-range/2226-ecostruxure-machine-expert

A Model-based Approach for Assessing the Security of Cyber-Physical Systems ARES 2024, July 30-August 2, 2024, Vienna, Austria

1:dos(scada):0.4

2:RULE 27 (OPC UA Flooding):0.4

3:netAccess(scada,opcua,opcua_port):0.8

4:RULE 5 (multi-hop access):0.8

5:hacl(webServer,scada,opcua,opcua_port):1.0 6:execCode(webServer,root):0.8

7:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.8

8:canAccessHost(webServer):1.0 9:hasAccount(alarmProvider,webServer,root):1.0 10:principalCompromised(alarmProvider):1.0

11:networkServiceInfo(scada,opcua_server,opcua,opcua_port,_):1.0

Figure 5: Generated attack graph for the OPCUA-Flooding attack.

right is the probability of reaching that node3. In the following, the
nodes are referred to by their step number in between parentheses.

The web server is open to the Internet and runs a VPN service
for remote connections. MulVAL concludes that the web server can
be accessed using a log-in service (8). On the other hand, the alarm
provider has an account used to connect to the CPS via the web
server (9). The attacker compromises the password (10) and gains
complete access to the web server (6).

The SCADA is directly connected to the server (5). The connec-
tion between these two hosts operates with the OPC UA protocol,
and the OPC UA port is open. Furthermore, the SCADA hosts an
OPC UA server program, which also communicates with the same
protocol and port (11). Hence, the attacker can send specifically
crafted OPC UA messages to overflow its resources, ultimately
leading to DoS (1, 2).

Besides generating the attack graph, MulVAL performs a quanti-
tative analysis by computing the probabilities. Theleaf nodes have
a probability of 1 because they are assumed to be true information
about the system. However, the rules are assigned a certain likeli-
hood corresponding to the difficulty in exploiting the attack step.
MulVAL then aggregates the probabilities by multiplying subse-
quent values.

6 RELATEDWORK
6.1 Security Modeling
Various modeling languages were developed to represent security
properties in engineering systems. Apvrille et al. [3] presented
SysML-Sec, an extension of SysML that supports custom diagrams
tailored for security. It introduces the Security Requirement
stereotype and provides mechanisms to measure the impact of cryp-
tographic countermeasures on the system’s performance. SysML-
Sec also introduces specific formalisms for attack graph represen-
tation [4]. However, it lacks several important security features,
such as concepts for threats, vulnerabilities, and goals [20]. Ad-
ditionally, El Hachem et al. [15] presented a SysML extension,
3Details on how the probabilities are computed can be found in [46]

named SoSSecML, to represent vulnerabilities and their pre and post-
conditions. The extension includes modifications of the Block dia-
gramwith added elements such as Goal, Organization, Environment,
Operation or Threat. Though it has been validated by real case
studies, it does not include the elicitation of assets.

On the other hand, Messe et al. [34] developed an asset-based
metamodel to identify the most critical components of the system.
It relies on name-matching and type hierarchies to classify the
components. It uses security databases, such as CommonWeakness
Enumeration (CWE) and Common Attack Pattern Enumeration
and Classification (CAPEC), to automatically discover vulnerabil-
ities and suggest appropriate countermeasures. The authors de-
signed their approach to bridge the gap between system architects
and security experts. However, it is not CPS-specific and does not
provide model-checking for system engineering properties. Sim-
ilarly, Vasilevskaya [64] introduced the Security for EmbeddED
Systems (SEED) method to be accessible to non-security experts.
The method is decomposed into three basic steps. First, a system
model is analyzed to identify the parts that need security protection.
Second, the security knowledge previously built by an expert is
consulted to retrieve a set of relevant security properties. Finally,
the selected set of security mechanisms is studied with respect to a
potential resource overhead. Several limitations were pointed out
in [20]: The security knowledge base needs to be created and main-
tained by an expert, and the expression of security properties is
limited, as metrics were defined tomeasure losses for confidentiality
and integrity only.

Outside of system modeling, other approaches were also devel-
oped by the security requirements engineering community. Secure
Tropos [32] is an extension to Tropos methodology that enables
developers to consider security issues throughout the development
process of multi-agent systems. It utilizes several tools and tech-
niques. The Secure Tropos Modeling Language is a graphical lan-
guage used to model actors, goals, dependencies, and security con-
straints, helping visualize the relationships and security require-
ments in the system. Threat analysis techniques, such as STRIDE,

ARES 2024, July 30-August 2, 2024, Vienna, Austria

are used to identify potential threats and mitigations. However, Se-
cure Tropos has some limitations. Namely, modeling actors, goals,
dependencies, and security constraints can be challenging, espe-
cially for large systems. Furthermore, it can be difficult to grasp and
apply effectively by non-security experts. Finally, it is not a system
modeling language, making it hardly scalable for complex CPSs.

Similarly, ARCHSEC [7] is an architectural security model aimed
at enhancing the security of computer systems by integrating se-
curity measures directly into the architecture of hardware and
software. By providing a graphical representation of the system,
based on EMF, as well as data flow diagrams of the different services,
the software system can be automatically analyzed w.r.t to vulnera-
bilities and threats. The analysis relies on graph queries to identify
situations where the security requirements of an application are
violated. Despite its numerous advantages, full automation of the
approach is not possible, and the runtime of the graph-based flaw
identification can grow quite large. Lastly, it is also software-centric,
and the queries are not necessarily appropriate for CPS-specific
vulnerabilities.

6.2 Attack Graph Generation
Several tools similar to MulVAL enable the generation of attack
scenarios as attack graphs. Johnson et al. [25] presented Meta At-
tack Language (MAL), a meta-model for cyber threat analysis. It
is inspired by CySeMol [45] and designed to allow any security
analyst to easily create a DSL. MAL’s compiler requires knowledge
about the system’s topology and possible attack steps. For example,
abstract Assets (e.g., a computer), Instances (e.g., a MacBook),
and Associations representing their connections can be defined. It
requires introducing Attack steps and Defenses for each asset. It
can be used for certain analyses such as attack graph generation or
Time To Compromise (TTC) calculation. However, MAL introduces
a new and unique meta-model with its own syntax [56], making it
incompatible with already existing system engineering frameworks.
Domain experts thus need experience in applying MAL to their
fields.

Temple et al. [22] presented CyberSecurity Argument Graph
Evaluation (Cybersage), an activity-centric tool that can represent
a threat agent’s workflow and compute the probability of an at-
tacker reaching his goal. Its models are built around workflows that
describe critical system functions or attacker actions. Those models
are populated with information about system devices, configura-
tion, and security controls. Attacker capabilities can be defined,
such as skill, resources, accesses, and intentions. Additionally, it
takes as input mal-activity diagrams, i.e., a modified version of
UML’s traditional sequence diagrams to represent malicious sce-
narios. However, these attack scenarios must be manually written,
which makes the process impractical and error-prone. Besides, mod-
eling very large systems has proven to be tedious [20], limiting the
potential of Cybersage.

Wortman et al. [57] introduced Translation of AADL Model
to Security Attack Tree (TAMSAT), a recent tool based on attack
trees. Its main feature is to automatically and seamlessly convert
an Architecture Analysis and Design Language (AADL) model [18]
into an attack tree. The modeler defines assets of importance, which
will serve as the root nodes of the generated attack tree. The AADL

Table 2: Features of different Model-based security tools

Tool CPS-specific Assets Stakeholders No Expertise Required Model-checking

SysML-Sec [3] ✓ ✗ ✗ ✗ ✓

SEED [64] ✓ ✓ ✗ ✓ ✓

MoRiAML [62] ✗ ✓ ✓ ✗ ✓

MBCA [37] ✗ ✓ ✓ ✗ ✓

Asset-based [34] ✗ ✓ ✓ ✓ ✗

SoSSecML [15] ✗ ✗ ✓ ✗ ✓

SecureTropos [32] ✗ ✓ ✓ ✗ ✓

ARCHSEC [7] ✗ ✗ ✗ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓

Table 3: Features of different Attack Graph generation tools

Tool CPS-specific Model input Attacker Model No Expertise Required Probability Assessment

CySeMol [45] ✗ ✗ ✗ ✓ ✓

MAL [56] ✗ ✗ ✗ ✓ ✓

ADVISE [28] ✓ ✗ ✓ ✗ ✓

Cybersage [22] ✓ ✗ ✓ ✗ ✓

FAST-CPS [30] ✓ ✓ ✓ ✓ ✗

TAMSAT [57] ✓ ✓ ✗ ✓ ✗

ADTOOL [19] ✗ ✗ ✓ ✗ ✓

Cybok [13] ✓ ✓ ✓ ✓ ✗

This work ✓ ✓ ✓ ✓ ✓

model is then parsed into a JSON dictionary, and vulnerabilities can
be automatically identified by querying a locally stored CVE data-
base. Finally, the generated format is compatible with the Security
Model Adversarial Risk-based Tool (SMART) [54], which can per-
form financial risk analysis. A limitation is that the vulnerability
database used is user-maintained (since it is locally stored). As such,
actions must be taken to make sure it is not outdated.

Carter et al. [13] proposed another SysML-based methodology
for CPS security modeling named Cybok. After the system and its
low-level components have been modeled, they are encoded into
an XML graph structure used for security analysis. Specifically,
the graph nodes are used to request various security databases
(including CVE, CWE, and CAPEC) and construct exploit chains, i.e.
a succession of attack patterns and vulnerability exploits performed
by an attacker. Cybok offers a seamless and intuitive approach
for CPS attack scenario identification which is model-driven and
accessible to non-security experts. However, it does not support
important risk analysis features such as the probability assessment
of attack scenarios.

6.3 Comparison with Existing Solutions
The proposed framework is compared to the previously described
works. Table 2 and 3 summarize the different comparison criteria.
Few existing security-oriented modeling languages were specifi-
cally designed for CPSs. Cyber and physical components are repre-
sented in the same way, and their differences are rarely considered.
On the other hand, when a language is CPS-specific, it is often
system-centric, making it hard to analyze non-functional require-
ments or external threats. The presented approach fills that gap by
introducing specific stereotypes for component types, assets, and
stakeholders. Besides, most modeling tools require the interven-
tion of a security analyst. Our extension of SysML’s metamodel
only includes basic security concepts (CIA), making it usable by
non-security experts.

Another challenge is the difficulty of accurately representing
CPS-specific vulnerabilities, while various tools only consider tra-
ditional IT system attacks. Adding new predicates and rules in
MulVAL makes it possible to generate more diverse and precise

A Model-based Approach for Assessing the Security of Cyber-Physical Systems ARES 2024, July 30-August 2, 2024, Vienna, Austria

scenarios, as we illustrate with the OPC UA Flooding attack. Fur-
thermore, few model-based solutions are used in vulnerability or
attack scenario identification. Our MTT transformations automati-
cally convert a SysML model into a MulVAL input, thus bridging
the gap between system architects and security experts.

7 DISCUSSION AND FUTUREWORK
We selected a HVAC system to validate the presented framework
and generate attack scenarios. Although this system is not as com-
plex as a real CPS system, we showed that it is possible to model its
components and their interactions for two different attacks. This
information was then used to automatically generate attack graphs.
However, further validation on larger systems is required to verify
if the generated attack graphs remain readable and if the modeling
process requires extensive resources.

Furthermore, the OPC UA Flooding attack was added as MulVAL
rules. This attack and its impact on CPSs have been extensively
investigated [9], and integrating it in MulVAL enables the genera-
tion of more complex and specific attack graphs. This method can
further be extended with additional rules to represent more diverse
attacks. One could generalize the approach with limited efforts by
choosing generic and well-crafted predicates.

The results of the performed evaluation confirm that the pro-
posed framework can model complex and CPS-specific scenarios.
This will ultimately help identify suitable countermeasures such
as, in the described case study, port hardening to prevent unnec-
essary OPC UA connections and intensive physical access control.
However, the identified attack scenarios were not tested on a real-
life system. Additional experiments are needed to build a physical
platform representing the case study and to carry out the attacks.
For these experiments, an appropriate set of metrics should be de-
fined to evaluate the approach’s effectiveness. Such metrics could
include, for instance, graph generation runtime, concept similar-
ity with other ontologies, or comparison between the probability
calculations from our framework and other methods.

The MTT transformations from a SysML model to MulVAL
source code make the proposed approach seamless and accessible
even to non-security experts. However, the CPS-specific vulnerabil-
ities and attacks have to be added manually, possibly by a security
expert, making it impractical. A solution would be to dynamically
connect to security databases, such as CVE or CAPEC, to automat-
ically generate the corresponding rules and predicates. However,
such databases do not always follow a standard, machine-readable
format. Future work on uniformizing security-related databases is
thus necessary.

Finally, the new metamodel can be used to accurately design the
system and its components. This system information is then used
by MulVAL to identify threat origins and generate attack scenar-
ios, along with a probabilistic assessment. However, risk treatment
and countermeasure selection are currently not supported. Mecha-
nisms to facilitate the graph’s interpretation are also required. This
could be solved by implementing additional MulVAL rules that inte-
grate countermeasures or by connecting to databases that consider
mitigations, such as CAPEC. The countermeasures could then be
translated back into the SysML input, with dedicated stereotypes,

to update the model before running a new simulation, thus closing
the feedback loop.

8 CONCLUSION
CPSs are complex and vulnerable systems, and their security must
be considered from an architectural perspective. Despite the po-
tential of models, few existing solutions apply MBSE practices to
represent precise and CPS-specific scenarios. We presented a new
model-based framework to automatically identify and assess at-
tack scenarios in CPSs to fill this gap. Our approach combines two
specific tools: SysML and MulVAL. SysML was extended with CPS-
specific and security-related stereotypes to better integrate security
elements directly into the CPS model. Additionally, new MulVAL
predicates and rules were developed to generate common attacks
in industrial systems, such as OPC UA Flooding. Finally, a set of
MTT transformations enable the automatic generation of a MulVAL
attack graph from a SysML model.

The presented framework was evaluated on a real-world inspired
smart building. It was possible to identify the vulnerabilities and
attack patterns leading to a system intrusion and a denial of service.
The MulVAL tool also computes success probabilities, indicating
the difficulty of carrying out these attacks. Such calculations can
be used to identify the most vulnerable components and prioritize
defenses.

Future work includes validation on a larger case study and mech-
anisms to query security databases. Ultimately, the framework
should be able to automatically identify the components’ types
and vulnerabilities, and suggest appropriate countermeasures with
only the information provided by the model. These steps are neces-
sary to guarantee the development of safer and more secure CPSs.

ACKNOWLEDGMENTS
This work is funded by the French Defense Innovation Agency
(AID) under contract n° 2021650010 (CERES).

REFERENCES
[1] Omar Doukari, Boubakar Seck, David Greenwood, Haibo Feng, and Mohamad

Kassem. [n. d.]. Towards an Interoperable Approach for Modelling and Managing
Smart Building Data: The Case of the CESI Smart Building Demonstrator. 12, 3
([n. d.]).

[2] Amin et al. 2013. Cyber Security of Water SCADA Systems—Part I: Analysis and
Experimentation of Stealthy Deception Attacks. IEEE Transactions on Control
Systems Technology 21, 5 (2013), 1963–1970.

[3] Apvrille et al. 2013. SYSML-SEC: A SYSML ENVIRONMENT FOR THE DESIGN
AND DEVELOPMENT OF SECURE EMBEDDED SYSTEMS. Yokohama, Japan.

[4] Apvrille et al. 2015. SysML-Sec Attack Graphs: Compact Representations for
Complex Attacks. In GraMSec@CSF.

[5] Brambilla et al. 2012. Model-Driven Software Engineering in Practice. Vol. 1.
[6] Balaji et al. 2015. Models, abstractions, and architectures: The missing links in

cyber-physical systems. In 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC). 1–6.

[7] Berger et al. 2019. The Architectural Security Tool Suite — ARCHSEC. In 2019
19th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 250–255. https://doi.org/10.1109/SCAM.2019.00035

[8] Ceri et al. 1989. What you always wanted to know about Datalog(and never
dared to ask). IEEE transactions on knowledge and data engineering 1, 1 (1989),
146–166.

[9] Cavalieri et al. 2010. Evaluating impact of security on OPC UA performance. In
3rd International Conference on Human System Interaction. 687–694.

[10] Cárdenas et al. 2011. Attacks against process control systems: risk assessment,
detection, and response. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (Hong Kong, China) (ASIACCS ’11). New
York, NY, USA, 355–366.

https://doi.org/10.1109/SCAM.2019.00035

ARES 2024, July 30-August 2, 2024, Vienna, Austria

[11] Cheikes et al. 2011. Common platform enumeration: Naming specification version
2.3.

[12] Chen et al. 2017. Cyber-physical system enabled nearby traffic flow modelling
for autonomous vehicles. In IEEE 36th International Performance Computing and
Communications Conference (IPCCC). 1–6.

[13] Carter et al. 2019. Cyber-Physical Systems Modeling for Security Using SysML.
665–675. https://doi.org/10.1007/978-3-030-00114-8_53

[14] Dibaji et al. 2019. A systems and control perspective of CPS security. Annual
Reviews in Control 47 (2019), 394–411.

[15] El Hachem et al. 2016. Model Driven Software Security Architecture of Systems-
of-Systems. In 23rd Asia-Pacific Software Engineering Conference (APSEC). 89–96.

[16] El Hachem et al. 2019. Using Bayesian Networks for a Cyberattacks Propagation
Analysis in Systems-of-Systems. In 2019 26th Asia-Pacific Software Engineering
Conference (APSEC). 363–370.

[17] El Hachem et al. 2020. Modeling, analyzing and predicting security cascading
attacks in smart buildings systems-of-systems. Journal of Systems and Software
162 (2020), 110484.

[18] Feiler et al. 2005. An Overview of the SAE Architecture Analysis and Design
Language (AADL) Standard: A Basis for Model-Based Architecture-Driven Em-
bedded Systems Engineering. In Architecture Description Languages, Pierre Dis-
saux, Mamoun Filali-Amine, Pierre Michel, and François Vernadat (Eds.). Boston,
MA, 3–15.

[19] Fila et al. 2019. Attack–Defense Trees for Abusing Optical Power Meters: A
Case Study and the OSEAD Tool Experience Report. In Graphical Models for
Security, Massimiliano Albanese, Ross Horne, and Christian W. Probst (Eds.).
Cham, 95–125.

[20] Geismann et al. 2020. A systematic literature review of model-driven security
engineering for cyber-physical systems. Journal of Systems and Software 169,
110697 (2020).

[21] Gartenberg et al. 2021. Security startup Verkada hack exposes 150,000 security
cameras in Tesla factories, jails, and more. https://www.theverge.com/2021/3/
9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-
jails-hospitals

[22] G. Temple et al. 2022. CyberSAGE: The cyber security argument graph evaluation
tool. Empirical Software Engineering volume 28, 18 (2022).

[23] Holloway et al. 2015. Stuxnet Worm Attack on Iranian Nuclear Facilities. http:
//large.stanford.edu/courses/2015/ph241/holloway1/

[24] Huang et al. 2018. Towards Modeling Cyber-Physical Systems with
SysML/MARTE/pCCSL, Vol. 1. Tokyo, Japan, 264–269.

[25] Johnson et al. 2018. AMeta Language for ThreatModeling andAttack Simulations.
In Proceedings of the 13th International Conference on Availability, Reliability and
Security (Hamburg, Germany) (ARES ’18). Association for Computing Machinery,
New York, NY, USA, Article 38, 8 pages.

[26] Long et al. 2005. Denial of service attacks on network-based control systems:
impact and mitigation. IEEE Transactions on Industrial Informatics 1, 2 (2005),
85–96.

[27] Lee et al. 2008. Cyber Physical Systems: Design Challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). 363–369.

[28] LeMay et al. 2011. Model-based Security Metrics Using ADversary VIew Se-
curity Evaluation (ADVISE). In Eighth International Conference on Quantitative
Evaluation of SysTems. 191–200.

[29] Lee et al. 2014. A Passivity Framework for Modeling and Mitigating Wormhole
Attacks on Networked Control Systems. IEEE Trans. Automat. Control 59, 12
(2014), 3224–3237.

[30] Lemaire et al. 2017. A logic-based framework for the security analysis of Industrial
Control Systems. Automatic Control and Computer Sciences 51, 2 (March 2017),
114–123.

[31] Mell et al. 2006. Common Vulnerability Scoring System. IEEE Security & Privacy
4, 6 (2006), 85–89.

[32] Mouratidis et al. 2007. Secure Tropos: A Security-Oriented Extension of the
Tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17 (04 2007). https://doi.org/10.1142/S0218194007003240

[33] Mahnke et al. 2009. OPC unified architecture.
[34] Messe et al. 2020. An Asset-Based Assistance for Secure by Design. In 2020 27th

Asia-Pacific Software Engineering Conference (APSEC). 178–187.
[35] McCormack et al. 2020. Security Analysis of Networked 3D Printers. In 2020

IEEE Security and Privacy Workshops (SPW). 118–125.
[36] Nguyen et al. 2017. Model-based security engineering for cyber-physical systems:

A systematic mapping study. Information and Software Technology 83 (2017),
116–135.

[37] Naouar et al. 2021. Towards the Integration of Cybersecurity Risk Assessment
into Model-based Requirements Engineering. Notre Dame, IN, USA, 334–344.

[38] Ou et al. 2005. MulVAL: A logic-based network security analyzer, Vol. 14. Balti-
more, MD, 8–8.

[39] Oldevik et al. 2005. Toward standardised model to text transformations. In
European Conference on Model Driven Architecture-Foundations and Applications.
Springer, 239–253.

[40] Phillips et al. 1998. A Graph-Based System for Network-Vulnerability Analysis.
In Proceedings of the 1998 Workshop on New Security Paradigms (Charlottesville,
Virginia, USA) (NSPW ’98). New York, NY, USA, 71–79. https://doi.org/10.1145/
310889.310919

[41] Ramos et al. 2012. Model-Based Systems Engineering: An Emerging Approach
for Modern Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42, 1 (2012), 101–111. https://doi.org/10.1109/TSMCC.
2011.2106495

[42] Sendall et al. 2003. Model transformation: the heart and soul of model-driven
software development. IEEE Software 20, 5 (2003), 42–45.

[43] Sandberg et al. 2010. On Security Indices for State Estimators in Power Networks.
[44] Smith et al. 2011. A Decoupled Feedback Structure for Covertly Appropriating

Networked Control Systems. IFAC Proceedings Volumes (IFAC-PapersOnline) 18
(Aug. 2011). ISBN: 9783902661937.

[45] Sommestad et al. 2013. The Cyber Security Modeling Language: A Tool for
Assessing the Vulnerability of Enterprise System Architectures. IEEE Systems
Journal 7, 3 (2013), 363–373.

[46] Sembiring et al. 2015. Network Security Risk Analysis using Improved MulVAL
Bayesian Attack Graphs. International Journal on Electrical Engineering and
Informatics 7 (12 2015), 735–753.

[47] Shevchenko et al. 2020. An Introduction to Model-Based Systems Engineering
(MBSE). Carnegie Mellon University, Software Engineering Institute’s Insights
(blog).

[48] Stan et al. 2022. Extending Attack Graphs to Represent Cyber-Attacks in Com-
munication Protocols and Modern IT Networks. IEEE Transactions on Dependable
and Secure Computing 19, 3 (2022), 1936–1954.

[49] Sultan et al. 2022. Safety, Security and Performance Assessment of Security
Countermeasures with SysML-Sec. In 10th International Conference on Model-
Driven Engineering and Software Development. Vienna, Austria.

[50] Sultan et al. 2022. Safety, Security and Performance Assessment of Security
Countermeasures with SysML-Sec. Vienna, Austria.

[51] Tuma et al. 2020. Automating the early detection of security design flaws. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems (Virtual Event, Canada) (MODELS ’20). Association
for Computing Machinery, New York, NY, USA, 332–342.

[52] Tayouri et al. 2023. A Survey of MulVAL Extensions and Their Attack Scenarios
Coverage. IEEE Access 11 (2023), 27974–27991. https://doi.org/10.1109/ACCESS.
2023.3257721

[53] Victorino et al. 2022. Cyber–physical system modeling with Modelica using
message passing communication. Simulation Modelling Practice and Theory 117
(2022), 102501.

[54] Wortman et al. 2020. SMART: security model adversarial risk-based tool for
systems security design evaluation. Journal of Cybersecurity 6, 1 (02 2020),
tyaa003.

[55] Wolny et al. 2020. Thirteen years of SysML: a systematic mapping study. Software
and Systems Modeling 19 (2020), 111–169.

[56] Wideł et al. 2023. The meta attack language - a formal description. Computers
and Security 130 (2023), 103284.

[57] Wortman et al. 2023. Translation of AADLmodel to security attack tree (TAMSAT)
to SMART evaluation of monetary security risk. Information Security Journal: A
Global Perspective 32, 4 (2023), 297–313.

[58] Yaacoub et al. 2020. Cyber-physical systems security: Limitations, issues and
future trends. Microprocessors and Microsystems 77 (2020), 103201.

[59] Eclipse Foundation. 2019. Eclipse Papyrus ™ Modeling environment. https:
//eclipse.dev/papyrus/

[60] Eclipse Foundation. 2023. Eclipse Acceleo. https://projects.eclipse.org/projects/
modeling.m2t.acceleo

[61] Object Management Group. 2008. ABOUT THE MOF MODEL TO TEXT TRANS-
FORMATION LANGUAGE SPECIFICATION VERSION 1.0. https://www.omg.org/
spec/MOFM2T/1.0/

[62] Douraïd Naouar. 2022.MoRiA Amodel-based method for cybersecurity risk analysis
: application to a complex naval defense system. doctoral thesis. Ecole nationale
supérieure Mines-Télécom Atlantique.

[63] OMG. 2023. ABOUT THE OMG SYSTEM MODELING LANGUAGE SPECIFICATION
VERSION 2.0 BETA. https://www.omg.org/spec/SysML/2.0/Beta1/About-SysML

[64] Maria Vasilevskaya. 2015. Security in Embedded Systems: A Model-Based Approach
with Risk Metrics. Ph. D. Dissertation. Linköping University, Department of
Computer and Information Science, Faculty of Science and Engineering.

https://doi.org/10.1007/978-3-030-00114-8_53
https://www.theverge.com/2021/3/9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-jails-hospitals
https://www.theverge.com/2021/3/9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-jails-hospitals
https://www.theverge.com/2021/3/9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-jails-hospitals
http://large.stanford.edu/courses/2015/ph241/holloway1/
http://large.stanford.edu/courses/2015/ph241/holloway1/
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1145/310889.310919
https://doi.org/10.1145/310889.310919
https://doi.org/10.1109/TSMCC.2011.2106495
https://doi.org/10.1109/TSMCC.2011.2106495
https://doi.org/10.1109/ACCESS.2023.3257721
https://doi.org/10.1109/ACCESS.2023.3257721
https://eclipse.dev/papyrus/
https://eclipse.dev/papyrus/
https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://www.omg.org/spec/MOFM2T/1.0/
https://www.omg.org/spec/MOFM2T/1.0/
https://www.omg.org/spec/SysML/2.0/Beta1/About-SysML

	Abstract
	1 Introduction
	2 Background
	2.1 Model-Based System Engineering
	2.2 Attack Graphs

	3 Methodology
	3.1 Systems Modeling
	3.2 Model-to-Text Transformations
	3.3 Automatic Graph Generation

	4 Implementation
	4.1 New stereotypes for the SysML Extension
	4.2 Extensions for MulVAL
	4.3 MTT Transformation Rules

	5 Case Study: Heating Ventilation Air Conditioning System
	5.1 Heat Ventilation Air Conditioning Architecture
	5.2 Scenario and Adversarial Model
	5.3 Modeling the Case Study
	5.4 Generated Attack Graphs

	6 Related Work
	6.1 Security Modeling
	6.2 Attack Graph Generation
	6.3 Comparison with Existing Solutions

	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

