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Abstract—Wireless enabling technologies in critical infrastruc-
tures are increasing the efficiency of communications. Most of
these technologies are vulnerable to jamming attacks. Jamming
attacks are among the most effective countermeasures to attack
and compromise their availability. Jamming is an interfering
signal that limits the intended receiver from correctly receiving
the messages. Localizing a jammer deployed by the adversary
in wireless sensor networks becomes difficult, if not impossible,
due to the inaccessibility of the affected sensors in the network.
This paper proposes an effective yet efficient jammer localization
scheme where battery-free wireless sensors harvest the energy
from the signal emitted by a powerful jammer. We compute
the distance and estimate the actual jammer location based
on the power received at each energy-harvesting node. We
conduct extensive simulations campaign to test and illustrate the
effectiveness of the proposed scheme. Finally, we demonstrate
the possibility of deploying the proposed scheme with off-shelf
equipment and consuming only 0.2175 mJ.

Index Terms—Energy-harvesting, Battery-free, Jammer local-
ization, Security, Cyber-physical Systems, Wireless Communica-
tion

I. INTRODUCTION

Jamming is the act of disturbing wireless radio communi-

cations by reducing the Signal-to-Noise Ratio (SNR), or over-

lapping signal with more power through the use of a device

called “jammer“. This type of denial of service attack aims to

disrupt the communication and prevent a transmitter and one

or more receivers from exchanging legitimate messages in a

target area such as airports, seaports, pipelines, or sensitive

military scenarios [1], [2]. Nowadays, the massive demand

of Software Defined Radios (SDRs) technology decreased the

complexity and the cost to deploy and launch a jamming attack

with minor modifications in software such as GNU/Radio.

Indeed, Jamming attacks can be easily carried out due to the

availability of the cheap off-shelf components that facilitate

these attacks [3]. According to recent forecasts by leading spe-

cialized companies, the business driving factors also indicate a

bright future for the Anti-Jamming Market. Indeed, according
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to a dedicated research report by Verified Market Research,

“Anti-Jamming Market Size And Forecast”, the Anti-Jamming

Market size was valued at USD 4.00 Billion in 2020 and is

projected to reach USD 7.50 Billion by 2028, growing at a

Compound Annual Growth Rate (CAGR) of 8.29% from 2021

to 2028. At the time of writing this paper, many solutions have

been proposed in the last decade for jamming localization.

However, besides being effective only in particular scenar-

ios with specific constraints, none of the currently-available

solutions entirely took a battery-less approach into account.

Indeed, a jammer-localization procedure involves at least the

deployment of collaborating 3 powered up nodes that sample

the wireless jammer transmission and estimate the jammer

position. Despite the provided glaring gap, the integration

of energy harvesting capabilities exploiting solar, mechanical,

thermoelectric, and electromagnetic sources into embedded

devices has further exasperated the vested energy budget issue.

Indeed, the availability of the energy source from the jammer

and the limitations in the overall available power supply have

led to challenging system trade-offs. Thanks to the increased

hardware miniaturization capabilities, energy harvesting tech-

nologies nowadays represent a sustainable, manageable, and

relatively low-cost alternative to batteries that can be adopted

in critical scenarios such as the jammer localization [4]. Thus,

the existing literature currently misses an effective energy

harvesting-based jammer localization algorithm and architec-

ture, not involving the adoption of energy-consuming devices

but being reliable and efficient even in hostile scenarios.

Contribution. The main contributions of our work can be

summarized as follows: (I) We propose a novel battery-free

localization scheme that allows estimating the location of

an active jammer based on the power emitted. Our scenario

assumes that the adversary targets a critical infrastructure, i.e.,

an airport, by jamming a specific frequency; (II) we utilize

physical-layer properties to perform the estimation based on

a set of deployed energy-harvesting wireless sensor nodes.

Namely, the power received by the nodes is computed and

employed to determine the position of the jammer; (III) we

consider an on-site guard who visits each deployed battery-



free tag and reads the power received. Our evaluation adopts

the log-normal shadow path-loss model to estimate the dis-

tance from the received signal; (IV) we consider realistic

and extreme conditions as well as complex and harsh operat-

ing environments; (V) we conducted an extensive simulation

campaign where we encompassed different shadowing (σ),

path loss exponents (γ), and different numbers of nodes to

prove the effectiveness of the proposed approach; (VI) we

illustrate the possibility and applicability of the proposed

scheme to be deployed on low-powered micro-controllers with

the use of energy harvesting devices through evaluating the

energy required to operate and collect readings on off-shelf

equipment.

Roadmap. The rest of this manuscript is organized as follows:

Section II introduces a few related work correlated with the

topic. Section III discusses the scenario, and threat model

assumed in this paper. Section IV illustrates the localization

procedures and highlights the simulations results. Section V

epitomizes the theoretical and experimental evaluation. Finally,

Section VI wraps up the findings in this paper and discusses

the future work.

II. RELATED WORK

The authors in [5] proposed SparseTag, a sparse Radio-

Frequency Identification (RFID) tag array-based system where

tags are placed at different distances from each other to achieve

high precision backscatter indoor localization. SparseTag de-

sign combines sparse array processing, difference co-array

design, Direction of Arrival (DoA) estimation using a spa-

tial smoothing-based approach, and a DoA-based localization

method. A robust channel selection method is implemented

to minimize the multipath effect. The proposed system ex-

perimental results show that the SparseTag system has high

efficacy and localization accuracy.

Luo et al. [6] introduced ShieldScatter. This lightweight

system purposefully creates multipath signatures by attach-

ing multiple low-cost backscatter tags to an access point or

Internet of Things (IoT) device to secure IoT device pairing

and data transmission. ShieldScatter secures IoT devices with-

out requiring costly antennas or modifying existing hardware.

They concluded that even if the attacker is only 15 cm

away from a legitimate device, ShieldScatter with only three

backscatter tags can mitigate 97% of spoofing attack attempts

while triggering false alarms on only 7% of legitimate traffic.

Van Huynh et al. [7] proposed an anti-jamming solution

that can utilize the signal generated by the jammer to transmit

data. Using the backscatter approach, the energy is harvested

from the signal transmitted by the jammer. Besides, the

reinforcement learning approach was adopted to estimate the

optimal policy, maximizing the transmitter network throughput

and delay.

III. BASIC SCENARIO AND ASSUMPTION

The scenario in this work is depicted in Figure 1. We con-

sider an adversary that targets a critical infrastructure, e.g., an

airport (or sea-port), intending to disrupt and block a generic
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Fig. 1: Scenario assumed in this work. A random deployed

jammer emits noise to block the communications over a

wireless channel in a critical infrastructure. A mobile entity

(e.g., a guard) detects the jamming and performs a channel

measurement by traversing only the nearest nodes, so to

estimate the position of the jammer.

wireless communication. We assume that a jammer device is

randomly deployed in a specific area. It emits a constant high-

power signal on a particular bandwidth
[

f0 −
B
2
, f0 +

B
2

]

,

where f0 is the central frequency. The aim of the jammers

is to disrupt all the wireless communications on this RF

spectrum. We assume a jammer that emits a Additive White

Gaussian Noise (AWGN) or a single-tone interference on

the communication channel. Moreover, we assume that the

jammer is provided with an omnidirectional antenna in order to

disturb the communications across all directions. The jammer

is also placed randomly to make the localization process

more challenging. At the same time, we aim to localize the

jammer by leveraging the power received by the RFID tags

distributed within the infrastructure’s premises. The randomly

deployed nodes are able to harvest energy from the jammer

and extract the path loss samples over a specific bandwidth

B around the central frequency f0 (i.e., the frequency range

is
[

f0 −
B
2
, f0 +

B
2

]

). We assume that a guard is in charge

of localizing the jammer. Acquiring and correlating the status

measurements of the closest nodes at different locations, the

guard visits only the nearest nodes by computing the minimum

Euclidean distance between the current nodes and all the nodes

until he/she achieves a good estimation about the jammer’s

position. We consider a Line of Sight (LoS) link between the

jammer and the sensing nodes by assuming the shadowing and

the multipath fading effects. This assumption is reasonable

because the jammer has the goal to maximise its disruptive

effect in a critical infrastructure and making the localization

process very hard [8].

Path loss Model. We assumed the log-normal path loss

model as shown in Eq. 1 to estimate the power received

PRX(di) at each node and estimate the distance di based

on the received power, where PTX represents the power

transmission of the jammer, PL(d0) represents the path loss at



the reference distance d0 (i.e., the length of the path) computed

by leveraging the Free Space model [9], γ is the path loss

exponent. At the same time, Xg defines the attenuation due to

the flat fading modeled as a Gaussian random variable with

zero mean and a standard deviation σ. The inverse of the

path loss model (Eq. 2) is adopted to estimate the distance

between the jammer and the active tag(s). We define as path

loss PL(di) = PTX−PRX(di)−PL(d0) the signal attenuation

experienced by a tag when receiving a wireless message

transmitted by a source located at distance di from the jammer.

PRX(di)[dBm] = PTX −PL(d0)−10 ·γ · log10
di

d0
−Xg (1)

di = d0 · 10
PL(di)

γ10 (2)

We summarize the simulation parameters and the notation used

in this paper in Table I.

TABLE I: Notation used throughout the paper.

Notation Description Value

f0 Channel Central Frequency. 915 MHz

N Number of times hearing the channel. 500

Pt Power Transmitted. 30 dBm

G Grid Size. [40 × 40]

σ Logarithmic Standard Deviation of the
Shadowing.

0.1 : 0.1 : 3

γ Path Loss Exponent. 2

T Set of Tags IDs. −

C Set of Tags Coordinates. −

A Set of Active Tags IDs. −

RS Receiver Sensitivity. −40 dBm

d0 Reference Distance. 1 m

PL0 Path Loss at the Reference Distance. 0 dBm

IV. LOCALIZING A JAMMER WITH BATTERY-FREE NODES

In this section, we first introduce our solution in a nutshell

(Sec. IV-A), followed by the details of the algorithm of the

proposed solution (Sec. IV-B). Finally, in (Sec. IV-C) we

discuss and illustrate all the simulations results.

A. Our Solution in a Nutshell

The proposed solution estimates the position of a potential

jammer threatening a critical infrastructure by evaluating the

power received from the harvesting nodes. To this aim, our

technique builds on three enabling components, (i) we deploy

random energy harvesting wireless sensor nodes in the critical

infrastructure, (ii) we identify the active nodes, i.e., the nodes

that can harvest the energy from the jammer, and (iii) we

visit only the nearest tags to estimate the jammer’s position.

Our solution adopts a standard localization technique, namely

linear least square (LLS), to estimate the jammer’s position.

We perform an extensive simulation campaign under conser-

vative assumptions of multipath fading and the shadowing

effects related to the wireless channel by varying the number

of the involved nodes, the path loss exponent, and the fading

component.

B. Jammer Localization Algorithm

This subsection introduces the algorithm that we adopted to

localize the jammer and the performance of such schema. The

jammer position estimation procedure is the following:

1) Select the starting Tag as a random Tag ID denoted with

ctag id from the Deployed Tags set T .

2) Check the status of each Tag with coordinates (xT , yT )
by using the function checkTagStatus(). The function

receives tag id as an input, and returns 1 if the Tag is

active, otherwise 0.

3) If the Tag is active, add the Tag ID to the Active Tags

set (A) and remove it from the deployed Tags set (T ).

4) Compute the Tag position by using the function nextTag().

It takes tag id as an input, computes the nearest Tag based

on the Euclidean distance, and returns the next Tag ID.

5) Repeat the steps 2 and 3 for the remaining Tags in T .

6) Check, in each iteration, the Active Tags set A.

7) If the set has 3 or more active Tags, the jammer position

is estimated.

8) Update the next position with the new Tag position and

remove the current Tag from the set T .

The aforementioned steps are used to estimate the jammer’s

location. Step 6 to 8 are repeatedly performed depending on

the size of the Active Tags set (A). Algorithm 1 summarizes

the aforementioned steps through pseudo-code.

Algorithm 1: Pseudo-code of the jammer estimated

position.

Input: T , C;
Result: Estimated Jammer Position (xJ , yJ);

1 A ← ∅;
// Selecting a Random reference Tag

2 tag id ← U [T ];
// Check if the Tag is powered

3 tag status ← checkTagStatus(ctag id);

4 if tag status = 1 then
5 A ← A ∪ ttag id;
6 end

7 T ← T \ ttag id;
8 next tag position ← nextTag(ttag id);

9 for i← 2 to |T | − 1 do
10 tag status ← checkTagStatus(cnext tag position);
11 if tag status = 1 then
12 A ← A ∪ tnext tag position;
13 end

// Estimate the jammer position

14 if |A| ≥ 3 ∧ tag status = 1 then
15 (xJ , yJ ) ← estimateJammer(A);
16 end

// Update the next position

17 if i ≤ |T | then
18 next tag position ← nextTag(ti);
19 T ← T \ ti;
20 end
21 end
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Fig. 2: Mean localization error as a function of σ (0.5 dBm

≤ σ ≤ 3 dBm) and the visited nodes (3 ≤ N ≤ 10).

Increasing the number of tags used dramatically improves the

localization accuracy while increasing the value of σ decreases

the localization accuracy.

C. Simulation

This subsection discusses the implementation and the anal-

ysis of the previously introduced localization algorithm.

To test the effectiveness of the proposed localization

scheme, we ran 10, 000 simulations. We measured the jammer

position by estimating the error while varying the number

of Tags and the value of σ. In each simulation, the Tags

are uniformly and randomly distributed. Figure 2 illustrates

the mean localization accuracy to the actual jammer location.

It can be noticed that when increasing the number of the

visited Tags, the localization error decreases. On the contrary,

when increasing the σ value, the localization error increases

regardless of the number of the visited Tags. Further, a detailed

analysis is presented in Figure 3 where σ is set to the value

of 1. The mean localization error dramatically decreases when

increasing the number of visited Tags used for estimation.

We start our analysis by considering the impact of the

shadowing on the wireless channel with a variance σ that

ranges between 0.5 dBm and 3 dBm. Further, we vary the

number of the deployed tags N between 3and 10. Figure 2

depicts the mean localization error as a function of σ and

N . The localization error has been computed as the euclidean

distance between the real jammer position and the estimated

one for the reference scenario. Finally, our results consider

the average value of 10, 000 simulation runs and an average

of 500 jamming signal readings.

Figure 3 depicts the localization error of the estimated

jammer position with different values of σ and the number

of deployed nodes in the network. The localization error is

significantly higher when σ is high, and the number of visited

nodes is low. It is worth noticing that even assuming the

optimal configuration, with N = 10 nodes and σ = 1 dBm

the localization error is about 4.5 meters. Furthermore, we

note that the localization process becomes significantly more

efficient when there are fewer nodes deployed in the network,
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Fig. 3: Number of visited tags as a function of the mean

localization error when σ ∈ [1, . . . , 3]. Regardless of the

value of σ, the localization error decreases with increasing

the number of Tags used for localization.

i.e., when 3 ≤ N ≤ 5, and it does not yield any crucial

advantage when there are more nodes deployed (N > 6).

Figure 4 reports the mean localization error (with the 95 %

confidence interval highlighted in red) of a jammer as a

function of σ (0.5 dBm ≤ σ ≤ 3 dBm) with 10 sensing

nodes in the network. The localization error was computed as

the Euclidean distance between the real jammer position and

estimated jammer position. We demonstrate that the maximum

localization error for N = 10 and σ = 3 dBm is approximately

10 m.
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Fig. 4: Confidence Interval for the Localization Error as a

function of σ (0.5 dBm ≤ σ ≤ 3 dBm) when using 10 Tags.

The error bound is less when σ ≤ 1. When σ > 1, the error

bound increases.

We now consider the average distance (with the 95 % con-

fidence interval highlighted in red) travelled by the guard

as a function of the visited tags in an area of 40 × 40.

Figure 5 shows that in order to localize a jammer with an

accuracy of 5− 15 m, the guard should visit N = 5 nodes by

travelling an average distance of 61 m. Moreover, increasing

the number of tags (N > 6) does not give any significant
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Fig. 5: Average travelled distance by the guard as a function

of the visited Tags.

advantage in the localization process in terms of travelled

distance and spent time to estimate the jammer position. In

order to localize the jammer, we refer to the same approach

used by the authors in [10], [11]. We estimate and combine

the distances {d1, . . . , dN} from the ranging process in order

to estimate the jammer position [xJ , yJ ]. This is a classical

linearization problem where starting from one sensor (xn, yn)

and its related distance to the jammer (dn) as a reference, and

by subtracting it to the n − 1 equations, we obtain a system

of n− 1 equations in the form Az = b, yielding:

A = −2×











(x1 − xn) (y1 − yn)
(x2 − xn) (y2 − yn)

...
...

(xn−1 − xn) (yn−1 − yn),











b =











x2

n + y2n − y2
1
− x2

1
+ d2

1
− d2n

x2

n + y2n − y2
2
− x2

2
+ d2

2
− d2n

...

x2

n + y2n − y2n−1
− x2

n−1
+ d2n−1

− d2n











Leveraging the Linear Least Square (LLS) method, we can

estimate the position of the jammer by solving the system

Az = b, as reported in Equation (3):

z = [xJ , yJ ]
T = (AT

A)
−1

A
T b (3)

V. THEORETICAL AND EXPERIMENTAL EVALUATION

The proposed approach can be evaluated in a Wireless

Sensor Network (WSN) scenario by adopting the following

equipment:

1) A PowerCast Transmitter (915MHz).

2) Evaluation Board with P2110B Power Harvester Chip.

3) Texas Instruments (TI) MSP430FR5994 LaunchPad De-

velopment Kit.

We performed an experimental campaign using the parameters

of the Powercast energy harvesting development kit and Texas

Instruments MSP430FR5994 LaunchPad development kit [12],

aimed at measuring the cost and applicability of introduced

solution on an actual energy harvesting deployment in terms

of time and energy.

A. Experimental Setup

In this setup, we consider that the MSP430FR5994 kit is pow-

ered by the energy harvested through the Powercast Evaluation

Board. In order to estimate the energy consumption by the

MSP430FR5994, we considered Powercast Evaluation Board

equipped with the Powerharvester P2110B chip that is capable

of producing an output voltage between 1.8 V to 5.25 V (de-

pending on the distance) and operating on a frequency between

850 MHz and 950 MHz, as the energy source to power the

MSP430FR5994. On the other hand, the MSP430FR5994 sup-

ports seven different operating modes [12]. The MCU features

one active mode and seven software-selectable optimized ultra-

low-power modes (LPM) of operation. An interrupt event can

wake up the device from low-power modes LPM0-4, serve the

request, and then return to low-power mode on return from the

interrupt program. Low-power modes LPM3.5 and LPM4.5

deactivate the core supply to reduce power consumption.

We considered 2 operating modes, namely active and low-

power mode 0 (LPM0). The number of devices used is set to

three devices, as the minimum number of devices required to

preform triangulation is three. Besides, the number of samples

acquired from each energy harvesting node is ≈ 1, 000 samples

for 1, 2, and 3 meters, and 2, 000 samples for 4 meters. Once

the readings are collected, the jamming location is estimated.

We computed the contributions of the processing and radio

chip to the overall energy consumption of our protocol through

Eq. 4.

E[mJ ] = V ·

∫ T

0

i(t)dt, (4)

being V the input voltage and i(t) the instantaneous drained

current.

B. Results and Considerations

Device (Mode) Operating

Frequency

Sampling

Rate

[Hz]

Current

[mA]

Voltage

[V ]

EVB P2110B 915 MHz 2 50 3.5

MSP430FR5994
(Active)

16 Hz 2 1.888 3

MSP430FR5994
(LP Mode 0)

16 Hz 2 0.290 3

TABLE II: Theoretical Evaluation Parameters.

From Figure 6a to Figure 6d, we see that the interference from

multiple energy transmissions depends on both the distance

of the PowerCast Transmitter and the evaluation board. As

the distance increases, the time needed to harvest the energy

increases, and vice versa. Figure 7 depicts the energy harvested

by the P2110B as a function of the distance from the transmit-

ter (jammer) and the energy consumed by the MSP430FR5994

in both modes (Active and Low-power). The distances from

the transmitter are 1, 2, 3, and 4 meters, respectively. At
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Fig. 6: Voltage as a function of time received at PowerCast P2110B energy-harvesting node.
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Fig. 7: Energy harvested by the P2110B as a function of the

distance, and consumed by the MSP430.

1 m, the P2110B harvests 2.606 mJ of energy, while an

MSP430 consumes in active mode consumes 1.4160 mJ and

0.2175 mJ in low power mode at the same distance, i.e.,

the 54.3% and the 8.34% of the harvested energy. In the

worst case, i.e., when the sensor has a distance of ≈ 4 m

from the transmitter, the MSP430 requires more energy in

active mode, i.e., 1.4160 mJ compared to the energy harvested

from the P2110B of ≈ 1.0749 with an overhead of 31.74%.

On the other hand, if the MSP430 works in low power

mode, it consumes roughly only 20.23% of the harvested

energy. Finally, we remark that the MSP430 low power mode

requires only 0.2175 mJ compared to the 1.4160 mJ in active

mode, regardless of the distance. Table II summarizes all the

considered parameters adopted in the theoretical evaluation

of the system. The introduced battery-free solution provides

many features such as: portability, ease of deployment, and a

low-cost maintenance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel battery-less jammer-

localization technique. We proved that a jammer could be

localized, leveraging the harvested energy from a jammer with-

out consuming energy from external batteries. The proposed

approach leverages a deployment of battery-free devices that

constantly harvest energy from an external RF source, e.g.,

a jammer. The results clearly demonstrate that the conceived

strategy ensures the best trade-off among energy consumption,

number of adopted deployed tags, and distance traveled by the

guard to localize the jammer. As reported by our performance

evaluation, we demonstrated that a jammer could be localized

with high precision and high efficiency with a MSP430 in

low power mode by consuming only 0.2175 mJ when the

distance from the jammer is 1 ∼ 4 m. Future research activities

in this direction intend to deeply investigate the novelty of

the proposed approach and evaluate the performance achieved

herein. We believe that this contribution paves the directions

for further research directions in the academia and industrial

sector.
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